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1. Introduction
He that will not apply new remedies must expect new evilstifite is the greatest innovator, and if time

of course alter things to the worse, and wisdom and counsgl sbt alter them to the better, what shall
be the end? —Francis Bacon

1.1 History

On November 6th, 1986, Maurice Wilkes wrote to Niklaus Wiptloposing that the Modula-2+ language be revised
and standardized as a successor to Modula-2. Wirth gaveniisct his blessing, and the Modula-3 committee was
born.



At the first meeting, the committee unanimously agreed touretb the spirit of Modula-2 by selecting simple, safe,
proven features rather than experimenting with our ownietideas. We found that unanimity was harder to achieve
when we got to the details.

Modula-3 supports interfaces, objects, generics, lighghtehreads of control, the isolation of unsafe code, ggeba
collection, exceptions, and subtyping. Some of the morblproatical features of Modula-2 have been removed, like
variant records and the built-in unsigned numeric data.tyyjedula-3 is substantially simpler than other languages
with comparable power.

Modula-3 is closely based on Modula-2+, which was desigh#ueeDigital Equipment Corporation Systems Research
Center and used to build the Topaz system [McJones89, R&&hdrhe Modula-3 design was a joint project by Digital
and Olivetti. The language definition was published in Audig88, and immediately followed by implementation
efforts at both companies. In January 1989, the committeisae the language to reflect the experiences of these
implementation teams. A few final revisions were made forpihiglication of this book.

SRC Modula-3 is distributed by the DEC Systems ResearcheCanter a liberal license. The distribution includes
a compiler for Modula-3, the Modula-3 Abstract Syntax Treelkit developed at Olivetti, and a runtime system with
configuration files for DEC, IBM, HP, and Sun workstations.

1.2 Perspective

Most systems programming today is done in the BCPL familpo§uages, which includes B, Bliss, and C. The beauty
of these languages is the modest cost with which they weeetalthke a great leap forward from assembly language.
To fully appreciate them, you must consider the engineeciggstraints of machines in the 1960s. What language
designed in the 1980s has a compiler that fits into four thadid&-bit words, like Ken Thompson’s B compiler for
the PDP-7? The most successful of these languages was Gy lshibe early 1970s had almost completely displaced
assembly language in the Unix system.

The BCPL-like languages are easy to implement efficientiytfe same reason they are attractive to skeptical assembly
language programmers: they present a programming modastblase to the target machine. Pointers are identified
with arrays, and address arithmetic is ubiquitous. Unfaataly, this low-level programming model is inherently
dangerous. Many errors are as disastrous as they would becinine language. The type system is scanty, and reveals
enough quirks of the target machine that even experiencgdlianiplined programmers sometimes write unportable
code simply by accident. The most modern language in thigdya@+, has enriched C by adding objects; but it has
also given up C'’s best virtue—simplicity—without relievings@vorst drawback—its low-level programming model.

At the other extreme are languages like Lisp, ML, Smalltalkg CLU, whose programming models originate from
mathematics. Lisp is the hybrid of the lambda calculus aedtleory of a pairing function; ML stems from poly-
morphic type theory; Smalltalk from a theory of objects anleritance; CLU from a theory of abstract data types.
These languages have beautiful programming models, byti¢mel to be difficult to implement efficiently, because
the uniform treatment of values in the programming modeitésva runtime system in which values are uniformly
represented by pointers. If the implementer doesn't tadqgsstio avoid it, as simple a statemenhas= n + 1 could
require an allocation, a method lookup, or both. Good impletations avoid most of the cost, and languages in this
family have been used successfully for systems programniBiog their general disposition towards heap allocation
rather than stack allocation remains, and they have nothbegmpular with systems programmers. The runtime sys-
tems required to make these languages efficient often éstiiam in closed environments that cannot accommodate
programs written in other languages. If you are a fan of thesguages you may find Modula-3 overly pragmatic; but
read on anyway, and give us a chance to show that pragmastraomns do not exclude attractive solutions.

Between the extremes of BCPL and Lisp is the Algol family afgaages, whose modern representatives include
Pascal, Ada, Modula-2, and Modula-3. These languages hragegmming models that reflect the engineering con-
straints of random-access machines but conceal the defailsy particular machine. They give up the beauty and
mathematical symmetry of the Lisp family in order to makeogint implementations possible without special tricks;
they also have strong type systems that avoid most of theedlang and machine-dependent features of the BCPL
family.



In the 1960s, the trend in the Algol family was toward feasuiar control flow and data structuring. In the 1970s, the
trend was toward information-hiding features like intedia, opaque types, and generics. More recently, the trend in
the Algol family has been to adopt a careful selection of méghes from the Lisp and BCPL families. This trend is
demonstrated by Modula-3, Oberon, and Cedar, to name thnggidges that have floated portable implementations
in the last few years.

Modula-3, Oberon, and Cedar all provide garbage colleciceviously viewed as a luxury available only in the closed
runtime systems of the Lisp family. But the world is startiogunderstand that garbage collection is the only way to
achieve an adequate level of safety, and that modern gadodigetors can work in open runtime environments.

At the same time, these three languages allow a small sesafeirmachine-dependent operations of the sort usually
associated with the BCPL family. In Modula-3, unsafe operat are allowed only in modules explicitly labeled
unsafe. The combination of garbage collection with the iekgkolation of unsafe features produces a language
suitable for programming entire systems from the highegtllapplications down to the lowest-level device drivers.

1.3 Overview

[ This section discusses the organization of the entire h8gktems Programming with Modula-& doesn’t seem
worth including this material in the on-line version. ]

1.4 Features

The remainder of the introduction is an overview of the mogiartant features of Modula-3.

1.4.1 Interfaces. One of Modula-2's most successful features is the provikomxplicit interfaces between mod-
ules. Interfaces are retained with essentially no changésadula-3. An interface to a module is a collection of
declarations that reveal the public parts of a module; thinghe module that are not declared in the interface are
private. A moduldmportsthe interfaces it depends on aexbortsthe interface (or, in Modula-3, the interfaces) that
it implements.

Interfaces make separate compilation type-safe; but it doem an injustice to look at them in such a limited way.
Interfaces make it possible to think about large systemisawitholding the whole system in your head at once.

Programmers who have never used Modula-style interfacekstteunderestimate them, observing, for example, that
anything that can be done with interfaces can also be dorfe@vityle include files. This misses the point: many
things can be done with include files that cannot be done witrfaces. For example, the meaning of an include file
can be changed by defining macros in the environment intohwhis included. Include files tempt programmers into
shortcuts across abstraction boundaries. To keep largggms well structured, you either need super-human will
power, or proper language support for interfaces.

1.4.2 Objects. The better we understand our programs, the bigger the bgiliiocks we use to structure them. After
the instruction came the statement, after the statemerd ttagrprocedure, after the procedure came the interface. The
next step seems to be thbstract type

At the theoretical level, an abstract type is a type definedhieyspecifications of its operations instead of by the
representation of its data. As realized in modern progrargr@inguages, a value of an abstract type is represented by
an “object” whose operations are implemented by a suite @équture values called the object’s “methods”. A new
object type can be defined asabtypeof an existing type, in which case the new type has all the ouzlof the old
type, and possibly new ones as well (inheritance). The npa ¢an provide new implementations for the old methods
(overriding).

Objects were invented in the mid-sixties by the farsightesighers of Simula [Birtwistle]. Objects in Modula-3 are
very much like objects in Simula: they are always referentiesy have both data fields and methods, and they have



single inheritance but not multiple inheritance.

Small examples are often used to get across the basic idezk ds a subtype of vehicle; rectangle as a subtype of
polygon. Modula-3 aims at larger systems that illustrate bbject types provide structure for large programs. In
Modula-3 the main design effort is concentrated into sp@wif the properties of a single abstract type—a stream of
characters, a window on the screen. Then dozens of interfawt modules are coded that provide useful subtypes of
the central abstraction. The abstract type provides thephint for a whole family of interfaces and modules. If the
central abstraction is well-designed then useful subtygpesbe produced easily, and the original design cost will be
repaid with interest.

The combination of object types with Modula-2 opaque typexipces something new: thmartially opaque type
where some of an object’s fields are visible in a scope and®#re hidden. Because the committee had no experience
with partially opaque types, the first version of Modula-8trieted them severely; but after a year of experience it was
clear that they were a good thing, and the language was teiogemove the restrictions.

It is possible to use object-oriented techniques even igudages that were not designed to support them, by explicitly
allocating the data records and method suites. This apprearks reasonably smoothly when there are no subtypes;
however it is through subtyping that object-oriented téghes offer the most leverage. The approach works badly
when subtyping is needed: either you allocate the datadsdor the different parts of the object individually (which

is expensive and notationally cumbersome) or you must nelyrewhecked type transfers, which is unsafe. Whichever
approach is taken, the subtype relations are all in the progrer’'s head: only with an object-oriented language is it

possible to get object-oriented static typechecking.

1.4.3 Generics. A generic module is a template in which some of the importédriaces are regarded as formal
parameters, to be bound to actual interfaces when the gesarstantiated. For example, a generic hash table module
could be instantiated to produce tables of integers, taiflésxt strings, or tables of any desired type. The different
generic instances are compiled independently: the souoggam is reused, but the compiled code will generally be
different for different instances.

To keep Modula-3 generics simple, they are confined to theuteddvel: generic procedures and types do not exist in
isolation, and generic parameters must be entire intesface

In the same spirit of simplicity, there is no separate typeking associated with generics. Implementations are
expected to expand the generic and typecheck the result. aliémmative would be to invent a polymorphic type
system flexible enough to express the constraints on thengdea interfaces that are necessary in order for the generic
body to compile. This has been achieved for ML and CLU, butai hot yet been achieved satisfactorily in the
Algol family of languages, where the type systems are legeum. (The rules associated with Ada generics are too
complicated for our taste.)

1.4.4 Threads. Dividing a computation into concurrent processes (or tiseaf control) is a fundamental method
of separating concerns. For example, suppose you are pnogrg a terminal emulator with a blinking cursor: the
most satisfactory way to separate the cursor blinking comte the rest of the program is to make it a separate thread.
Or suppose you are augmenting a program with a new moduledhaunicates over a buffered channel. Without
threads, the rest of the program will be blocked whenevengve module blocks on its buffer, and conversely, the
new module will be unable to service the buffer whenever ahgrpart of the program blocks. If this is unacceptable
(as it almost always is) there is no way to add the new modulkowrt finding and modifying every statement of
the program that might block. These modifications destreystinucture of the program by introducing undesirable
dependencies between what would otherwise be independehties.

The provisions for threads in Modula-2 are weak, amountsggstially to coroutines. Hoare’s monitors [Hoare] are

a sounder basis for concurrent programming. Monitors weeg in Mesa, where they worked well; except that the

requirement that a monitored data structure be an entirailaodas irksome. For example, it is often useful for a

monitored data structure to be an object instead of a modildsa relaxed this requirement, made a slight change in
the details of the semantics of Hoar8'sgnal primitive, and introduced thBroadcast primitive as a convenience



[Lampson]. The Mesa primitives were simplified in the Mod@ladesign, and the result was successful enough to be
incorporated with no substantial changes in Modula-3.

A threads package is a tool with a very sharp edge. A commogranoming error is to access a shared variable
without obtaining the necessary lock. This introduces & @mndition that can lie dormant throughout testing and
strike after the program is shipped. Theoretical work orcess algebra has raised hopes that the rendezvous model of
concurrency may be safer than the shared memory model,dakfferience with Ada, which adopted the rendezvous,
lends at best equivocal support for this hope—Ada still ai@lvared variables, and apparently they are widely used.

1.4.5 Safety. A language feature iansafeif its misuse can corrupt the runtime system so that furtilecetion of

the program is not faithful to the language semantics. Anrgta of an unsafe feature is array assignment without
bounds checking: if the index is out of bounds, then an atyittocation can be clobbered and the address space can
become fatally corrupted. An error in a safe program canethescomputation to abort with a run-time error message
or to give the wrong answer, but it can’t cause the computdtiacrash in a rubble of bits.

Safe programs can share the same address space, each sat®ifirgption by errors in the others. To get similar
protection for unsafe programs requires placing them irasdp address spaces. As large address spaces become
available, and programmers use them to produce tightlyleduapplications, safety becomes more and more impor-
tant.

Unfortunately, it is generally impossible to program thevdst levels of a system with complete safety. Neither the
compiler nor the runtime system can check the validity of & &ddress for an I/O controller, nor can they limit the
ensuing havoc if it is invalid. This presents the languagggieer with a dilemma. If he holds out for safety, then low
level code will have to be programmed in another languageifBe adopts unsafe features, then his safety guarantee
becomes void everywhere.

The languages of the BCPL family are full of unsafe featuties;languages of the Lisp family generally have none
(or none that are documented). In this area Modula-3 follivedead of Cedar by adopting a small number of unsafe
features that are allowed only in modules explicitly labal@safe. In a safe module, the compiler prevents any errors
that could corrupt the runtime system; in an unsafe moduige tihe programmer’s responsibility to avoid them.

1.4.6 Garbage collection. A classic unsafe runtime error is to free a data structureishstill reachable by active
references (or “dangling pointers”). The error plants aetibomb that explodes later, when the storage is reused. If
on the other hand the programmer fails to free records that hacome unreachable, the result will be a “storage
leak” and the computation space will grow without bound.dkms due to dangling pointers and storage leaks tend
to persist long after other errors have been found and rethoVee only sure way to avoid these problems is the
automatic freeing of unreachable storage, or garbagectiolie

Modula-3 therefore provides “traced references”, whiahldke Modula-2 pointers except that the storage they point
to is kept in the “traced heap” where it will be freed autoroalty when all references to it are gone.

Another great benefit of garbage collection is that it sifiggiinterfaces. Without garbage collection, an interface
must specify whether the client or the implementation hag#isponsibility for freeing each allocated reference, and
the conditions under which it is safe to do so. This can swamfriterface in complexity. For example, Modula-3
supports text strings by a simple required interfaeet, rather than with a built-in type. Without garbage collenti
this approach would not be nearly as attractive.

New refinements in garbage collection have appeared cafljnfior more than twenty years, but it is still difficult
to implement efficiently. For many programs, the programgrime saved by simplifying interfaces and eliminating
storage leaks and dangling pointers makes garbage coheatbargain, but the lowest levels of a system may not
be able to afford it. For example, in SRC’s Topaz system, #me @f the operating system that manages files and
heavy-weight processes relies on garbage collection heunner “nub” that implements virtual memory and thread
context switching does not. Essentially all Topaz appiliceprograms rely on garbage collection.

For programs that cannot afford garbage collection, Mo@uteovides a set of reference types that are not traced by



the garbage collector. In most other respects, traced atnaoga references behave identically.

1.4.7 Exceptions. An exception is a control construct that exits many scopemeg. Raising an exception exits
active scopes repeatedly until a handler is found for thegtken, and transfers control to the handler. If there is no
handler, the computation terminates in some system-depemciy—for example, by entering the debugger.

There are many arguments for and against exceptions, mastiofi revolve around inconclusive issues of style and
taste. One argument in their favor that has the weight of Bxipee behind it is that exceptions are a good way to
handle any runtime error that is usually, but not necessdailal. If exceptions are not available, each proceduae th
might encounter a runtime error must return an additiondédo the caller to identify whether an error has occurred.
This can be clumsy, and has the practical drawback that evesfut programmers may inadvertently omit the test for
the error return code. The frequency with which returnedrerodes are ignored has become something of a standing
joke in the Unix/C world. Raising an exception is more robsggice it stops the program unless there is an explicit
handler for it.

1.4.8 Type system. Like all languages in the Algol family, Modula-3 is stronglyped. The basic idea of strong
typing is to partition the value space into types, restragiables to hold values of a single type, and restrict opmrat

to apply to operands of fixed types. In actuality, strongrigps rarely so simple. For example, each of the following
complications is present in at least one language of the |Alyuily: a variable of type[0..9] may be safely
assigned to anNTEGER, but not vice-versa (subtyping). Operations like absol#iele may apply both tBEALS

and toINTEGERS instead of to a single type (overloading). The types ofdlte(for exampleNIL) can be ambiguous.
The type of an expression may be determined by how it is usegift-typing). Type mismatches may cause automatic
conversions instead of errors (as when a fractional realisded upon assignment to an integer).

We adopted several principles in order to make Modula-3& tyystem as uniform as possible. First, there are no
ambiguous types or target-typing: the type of every exjwass determined by its subexpressions, not by its use.
Second, there are no automatic conversions. In some casepthsentatiorof a value changes when it is assigned
(for example, when assigning to a packed field of a record)tppethe abstract value itself is transferred without
change. Third, the rules for type compatibility are defineterms of a single subtype relation. The subtype relation
is required for treating objects with inheritance, but italso useful for defining the type compatibility rules for
conventional types.

1.4.9 Simplicity. In the early days of the Ada project, a general in the Ada RiogDffice opined that “obviously
the Department of Defense is not interested in an artificgihplified language such as Pascal”. Modula-3 represents
the opposite point of view. We used every artifice that we @dinld or invent to make the language simple.

C.A.R. Hoare has suggested that as a rule of thumb a langsitge¢omplicated if it can’t be described precisely and
readably in fifty pages. The Modula-3 committee elevatesltihia design principle: we gave ourselves a “complexity
budget” of fifty pages, and chose the most useful featurésatbaould accommodate within this budget. In the end,
we were over budget by six lines plus the syntax equations ddlicy is a bit arbitrary, but there are so many good
ideas in programming language design that some kind ofrarpibudget seems necessary to keep a language from
getting too complicated.

In retrospect, the features that made the cut were direoteartl two main goals. Interfaces, objects, generics, and
threads provide fundamental patterns of abstraction #ipttb structure large programs. The isolation of unsafecod
garbage collection, and exceptions help make programsaademore robust. Of the techniques that we used to keep
the language internally consistent, the most important tvagefinition of a clean type system based on a subtype
relation. There is no special novelty in any one of theseaufeatindividually, but there is simplicity and power in thei
combination.



2.1 Definitions

A Modula-3 program specifies a computation that acts on aesegpuof digital components calléotations A vari-
ableis a set of locations that represents a mathematical vak@rdiag to a convention determined by the variable’s
type If a value can be represented by some variable of Tyben we say that the value isnaemberof T andT
containsthe value.

An identifieris a symbol declared as a name for a variable, type, proceetiereThe region of the program over which
a declaration applies is called teopeof the declaration. Scopes can be nested. The meaning ofkatifidr is
determined by the smallest enclosing scope in which theifiris declared.

An expressiorspecifies a computation that produces a value or variablereSgions that produce variables are called
designators A designator can denote either a variable or the value ofvinrgable, depending on the context. Some
designators areeadonly which means that they cannot be used in contexts that miigimge the value of the variable.
A designator that is not readonly is calleditable. Expressions whose values can be determined staticallyadiesl
constant expressionghey are never designators.

A static erroris an error that the implementation must detect before pragexecution. Violations of the language
definition are static errors unless they are explicitly sifésd as runtime errors.

A checked runtime errors an error that the implementation must detect and reportirgtme. The method for
reporting such errors is implementation-dependent. @fitplementation maps them into exceptions, then a program
could handle these exceptions and continue.)

An unchecked runtime erras an error that is not guaranteed to be detected, and caa tteisubsequent behavior of
the computation to be arbitrary. Unchecked runtime errarsaccur only in unsafe modules.

2.2 Types

| am the voice of today, the herald of tomorrow... | am the &adrmy that conquers the world—I am
TYPE. —Frederic William Goudy

Modula-3 uses structural equivalence, instead of the najuiwadence of Modula-2. Two types are the same if their
definitions become the same when expanded; that is, whepradtant expressions are replaced by their values and
all type names are replaced by their definitions. In the chsecorsive types, the expansion is the infinite limit of the
partial expansions. A type expression is generally allowhdrever a type is required.

A type isemptyif it contains no values. For examplé1..0] is an empty type. Empty types can be used to build
non-empty types (for exampl8ET 0F [1..0], which is not empty because it contains the empty set). Itsigac
error to declare a variable of an empty type.

Every expression has a statically-determined type, whictiains every value that the expression can produce. The
type of a designator is the type of the variable it produces.

Assignability and type compatibility are defined in termsadfingle syntactically specified subtype relation with the
property that ifT is a subtype ofJ, then every member df is a member ofl. The subtype relation is reflexive and
transitive.

Every expression has a unique type, but a value can be a mefbany types. For example, the valéies a member
of both [0..9] andINTEGER. It would be ambiguous to talk about “the type of a value”. Stive phrase “type of’
means “type of the expressiaf}, while “x is a member of” means “the value of is a member of”.

However, there is one sense in which a value can be said tcehigpe: every object or traced reference value includes
a code for a type, called thalocated typeof the reference value. The allocated type is testeUYRECASE.



2.2.1 Ordinal types

There are three kinds of ordinal types: enumerations, sgies and integers.
There are two integer types, which in order of increasingessreINTEGER andLONGINT.
An enumeration type is declared like this:

TYPE T = {id_1, id_2, ..., id_n}

where theid’s are distinct identifiers. The typeis an ordered set af values; the expressidn id_i denotes thé'th
value of the type in increasing order. The empty enumerdfidnis allowed.

Integers and enumeration elements are collectively caltdihal values The base typeof an ordinal valuev is
INTEGER (or LONGINT) if v is an integer (or extended range integer, respectiveligratise it is the unique enumera-
tion type that contains.

A subrange type is declared like this:
TYPE T = [Lo..Hi]

whereLo andHi are two ordinal values with the same base type, called thetlyps of the subrange. The valuesTof
are all the values frorho to Hi inclusive.Lo andHi must be constant expressionsL#f exceedsii, the subrange is
empty.

The operator®RD and VAL convert between enumerations and integers. The operglagy, LAST, and NUMBER
applied to an ordinal type return the first element, last eletyand number of elements, respectively.

Here are the predeclared ordinal types:

INTEGER  All integers represented by the implementation

LONGINT  Extended range integers, with at least as much ran@&E&GER
CARDINAL Behaves just like the subrange. . LAST (INTEGER) ]

BOOLEAN  The enumeratioAFALSE, TRUE}

CHAR An enumeration containing at least 256 elements
WIDECHAR An enumeration containing at least 65536 elements

The first 256 elements of typ@HAR represent characters in the 1SO-Latin-1 code, which is &ension of ASCII.
The first 65536 elements of typ@DECHAR represent characters in the Unicode character code. Thedge does not
specify the names of the elements of (AR or WIDECHAR enumerations. The syntax for character literals is spékifie
in the section on literals$ALSE andTRUE are predeclared synonyms ®E0LEAN . FALSE andBOOLEAN . TRUE.

Each distinct enumeration type introduces a new colleatforalues, but a subrange type reuses the values from the
underlying type. For example:

TYPE
T1 = {A, B, C};
T2 = {A, B, C};
Ul = [T1.A..T1.C];
U2 = [T1.A..T2.C]; (% sic *)
v = {A, B}

T1 andT2 are the same type, since they have the same expanded defihitjparticular,T1.C = T2.C and therefore

U1 andU2 are also the same type. But the tyfiasandU1 are distinct, although they contain the same values, becaus
the expanded definition af1 is an enumeration while the expanded definitiorupfis a subrange. The typeis a
third type whose values. A andv. B are not related to the valugs . A andT1.B.



2.2.2 Floating-point types

There are three floating point types, which in order of insieg range and precision aREAL, LONGREAL, and
EXTENDED. The properties of these types are specified by requiredfactss.

2.2.3 Arrays

An array is an indexed collection of component variables, calleceteenent®f the array. The indexes are the values
of an ordinal type, called thiedex typeof the array. The elements all have the same size and the gpmectlled the
element typef the array.

There are two kinds of array typefixedandopen The length of a fixed array is determined at compile time. The
length of an open array type is determined at runtime, whendtiocated or bound. The length cannot be changed
thereatfter.

The shapeof a multi-dimensional array is the sequence of its lengtlesich dimension. More precisely, the shape of
an array is its length followed by the shape of any of its eletsigehe shape of a non-array is the empty sequence.

Arrays are assignable if they have the same element typehape sif either the source or target of the assignment is
an open array, a runtime shape check is required.

A fixed array type declaration has the form:
TYPE T = ARRAY Index OF Element

whereIndex is an ordinal type an8lement is any type other than an open array type. The values oflype arrays
whose element type Blement and whose length is the number of elements of the Iypiex.

If a has typeT, thena[i] designates the element @fwhose position corresponds to the position ofi Index. For
example, consider the declarations:

VAR a := ARRAY [1..3] OF REAL {1.0, 2.0, 3.0};
VAR b: ARRAY [-1..1] OF REAL := a;

Now a = bis TRUE,; yeta[1] = 1.0 whileb[1] = 3.0. The interpretation of indexes is determined by an array’s

type, not its value; the assignmeant: = a change®’s value, not its type. (This example uses variable initetiion,
and array constructors.)

An expression of the form:
ARRAY Index_1, ..., Index_n OF Element
is shorthand for:
ARRAY Index_1 OF ... OF ARRAY Index_n OF Element

This shorthand is eliminated from the expanded type defimitised to define structural equivalence. An expression
of the formali_1, ..., i_n] isshorthand foa[i_1]...[i_n].

An open array type declaration has the form:
TYPE T = ARRAY OF Element
whereElement is any type. The values afare arrays whose element type&iisment and whose length is arbitrary.

The index type of an open array is the integer subraitgen-1], wheren is the length of the array.
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An open array type can be used only as the type of a formal paearthe referent of a reference type, the element
type of another open array type, or as the type in an arraytrcantesr.

Examples of array types:

TYPE
Transform = ARRAY [1..3], [1..3] OF REAL;
Vector = ARRAY OF REAL;
SkipTable = ARRAY CHAR OF INTEGER

2.2.4 Records

A recordis a sequence of named variables, calledfitlels of the record. Different fields can have different types.
The name and type of each field is statically determined byaberd’s type. The expressianf designates the field
namedt in the recordr.

A record type declaration has the form:
TYPE T = RECORD FieldList END
whereFieldList is a list of field declarations, each of which has the form:
fieldName: Type := default
wherefieldName is an identifier,Type is any non-empty type other than an open array type, duféult is a

constant expression. The field names must be distinct. Adds@ member of if it has fields with the given names
and types, in the given order, and no other fields. Empty tcare allowed.

The constantiefault is a default value used when a record is constructed or afldceEither “= default” or
“: Type” can be omitted, but not both. ffype is omitted, it is taken to be the type @éfault. If both are present,
the value ofdefault must be a member dfype.

When a series of fields shares the same type and defaultf ianiyiName can be a list of identifiers separated by
commas. Such a list is shorthand for a list in which the typbdafault are repeated for each identifier. That is:

£f_1, ..., f_m: Type := default
is shorthand for:
f_1: Type := default; ...; f_m: Type := default

This shorthand is eliminated from the expanded definitiotheftype. The default values are included.
Examples of record types:
TYPE
Time = RECORD
seconds: INTEGER;
milliseconds: [0..999]
END;
Alignment = {Left, Center, Right};

TextWindowStyle = RECORD
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align = Alignment.Center;
font = Font.Default;
foreground = Color.Black;
background = Color.White;
margin, border := 2

END

2.2.5 Packed types
A declaration of a packed type has the form:

TYPE T = BITS n FOR Base
whereBase is a type and is an integer-valued constant expression. The values eftygre the same as the values
of typeBase, but variables of typ& that occur in records, objects, or arrays will occupy exactbits and be packed
adjacent to the preceding field or element. For example,iablarof type

ARRAY [0..255] OF BITS 1 FOR BOOLEAN

is an array of 256 booleans, each of which occupies one btbodge.

The values allowed fon are implementation-dependent. An illegal value fiois a static error. The legality of a
packed type can depend on its context; for example, an ingrigation could prohibit packed integers from spanning
word boundaries.

2.2.6 Sets
A setis a collection of values taken from some ordinal type. A gpétdeclaration has the form:
TYPE T = SET OF Base

whereBase is an ordinal type. The values Gfare all sets whose elements have tgpee. For example, a variable
whose type ISET OF [0..1] can assume the following values:

{} {02 {1} {0,1}

Implementations are expected to use the same represenfatia SET OF T as for anARRAY T OF BITS 1 FOR
BOOLEAN. Hence, programmers should expgET OF [0..1023] to be practical, but Nn(BET OF INTEGER.

2.2.7 References

A referencevalue is eithelNIL or the address of a variable, called the referent.

A reference type is eith@éracedor untraced When all traced references to a piece of allocated storaggare, the
implementation reclaims the storage. Two reference type®fathe sameeference clas# they are both traced or
both untraced. A general type is traced if it is a traced eafee type, a record type any of whose field types is traced,
an array type whose element type is traced, or a packed typsenimderlying unpacked type is traced.

A declaration for a traced reference type has the form:

TYPE T = REF Type
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whereType is any type. The values df are traced references to variables of tygee, which is called theeferent
typeof T.

A declaration for an untraced reference type has the form:
TYPE T = UNTRACED REF Type

whereType is any untraced type. (This restriction is lifted in unsafedules.) The values df are the untraced
references to variables of tyfigpe.

In both the traced and untraced cases, the keywarican optionally be preceded bpEANDED b” whereb is

a text constant called thierand Brands distinguish types that would otherwise be the salme, have no other
semantic effect. All brands in a program must be distincBRUNDED is present and is absent, the implementation
automatically supplies a unique value torExplicit brands are useful for persistent data storage.

The following reference types are predeclared:

REFANY Contains all traced references
ADDRESS Contains all untraced references
NULL Contains onlyWIL

The TYPECASE statement can be used to test the referent typeR@FANY or object, but there is no such test for an
ADDRESS.

Examples of reference types:
TYPE TextLine = REF ARRAY OF CHAR;

ControllerHandle = UNTRACED REF RECORD
status: BITS 8 FOR [0..255];
filler: BITS 12 FOR [0..0];
pc: BITS 12 FOR [0..4095]

END;

T = BRANDED "ANSI-M3-040776" REF INTEGER;

Apple = BRANDED REF INTEGER;
Orange = BRANDED REF INTEGER;

2.2.8 Procedures
A procedures eitherNIL or a triple consisting of:

e thebody, which is a statement,

¢ thesignature which specifies the procedure’s formal arguments, regodt, tand raises set (the set of exceptions
that the procedure can raise),

e theenvironmentwhich is the scope with respect to which variable namesearbtidy will be interpreted.

A procedure that returns a result is callefuaction procedurga procedure that does not return a result is called
a proper procedure A top-levelprocedure is a procedure declared in the outermost scopenafdale. Any other
procedure is docal procedure. A local procedure can be passed as a parameteotbagsigned, since in a stack
implementation a local procedure becomes invalid whenrdrad for the procedure containing it is popped.

13



A procedure constaris an identifier declared as a procedure. (As opposed to @guoe variable, which is a variable
declared with a procedure type.)

A procedure type declaration has the form:
TYPE T = PROCEDURE sig

wheresig is a signature specification, which has the form:
(formal_1; ...; formal_n): R RAISES S

where

e Eachformal_i is a formal parameter declaration, as described below.

e R is the result type, which can be any type but an open array. tfiije “: R” can be omitted, making the
signature that of a proper procedure.

e Sistheraises set, which is either an explicit set of excegtisith the syntaXE_1, ..., E_n}, orthe symbol
ANY representing the set of all exceptions. BBTSES S” is omitted, “‘RAISES {}”is assumed.

A formal parameter declaration has the form
Mode Name: Type := Default
where

e Mode is a parameter mode, which canWLUE, VAR, or READONLY. If Mode is omitted, it defaults t&#/ ALUE.
e Name is an identifier that names the parameter. The parametersnanmst be distinct.
e Type is the type of the parameter.

e Default is a constant expression, the default value for the paramétéode is VAR, “:= Default” must be

omitted, otherwise either:= Default” or “: Type” can be omitted, but not both. tfype is omitted, it is
taken to be the type dfefault. If both are present, the value béfault must be a member dfype.

When a series of parameters share the same mode, type, antt,defae can be a list of identifiers separated by
commas. Such a list is shorthand for a list in which the mogwe,tand default are repeated for each identifier. That
is:

Mode v_1, ..., v_n: Type := Default
is shorthand for:

Mode v_1: Type := Default; ...; Mode v_n: Type := Default

This shorthand is eliminated from the expanded definitiotheftype. The default values are included.

A procedure valu® is a member of the type if it is NIL or its signature isoveredby the signature of, where
signature_1 coverssignature_2 if:

e They have the same number of parameters, and corresporatizg@ters have the same type and mode.

e They have the same result type, or neither has a result type.
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e The raises set afignature_1 contains the raises set sfgnature_2.

The parameter names and defaults affect the type of a progdalit not its value. For example, consider the declara-
tions:

PROCEDURE P(txt: TEXT := "P") =
BEGIN
Wr.PutText(Stdio.stdout, txt)
END P;
VAR q: PROCEDURE(txt: TEXT := "Q") := P;

Now P = qis TRUE, yetP () prints “P” and q() prints “Q”. The interpretation of defaulted parameters is deterghine
by a procedure’s type, not its value; the assignneent P changesy’s value, not its type.

Examples of procedure types:

TYPE
Integrand = PROCEDURE (x: REAL): REAL;
Integrator = PROCEDURE(f: Integrand; lo, hi: REAL): REAL;

TokenIterator = PROCEDURE(VAR t: Token) RAISES {TokenError};

RenderProc = PROCEDURE(
scene: REFANY;
READONLY t: Transform := Identity)

In a procedure type&AISES binds to the closest precediRBOCEDURE. That is, the parentheses are required in:

TYPE T = PROCEDURE (): (PROCEDURE ()) RAISES {}

2.2.9 Objects

An objectis eitherNIL or a reference to a data record paired with a method suitehafia record of procedures that
will accept the object as a first argument.

An object type determines the types of a prefix of the fieldhefdata record, as if0BJECT” were “REF RECORD".

But in the case of an object type, the data record can contiditi@nal fields introduced by subtypes of the object
type. Similarly, the object type determines a prefix of thetrod suite, but the suite can contain additional methods
introduced by subtypes.

If o is an object, thewn . £ designates the data field namiih o's data record. Ifa is one ofo’s methods, an invocation
of the formo.m(. ..) denotes an execution efs m method. An object’s methods can be invoked, but not read or
written.

If T is an object type and is the name of one af's methods, theff.m denotes’s m method. This notation makes it
convenient for a subtype method to invoke the correspondieiinod of one of its supertypes.

A field or method in a subtype masks any field or method with Bireesname in the supertype. To access such a
masked field, usBARROW to view the subtype variable as a member of the supertypussated below.

Object assignment is reference assignment. Objects caerddreferenced, since the static type of an object variable
does not determine the type of its data record. To copy the r@abrd of one object into another, the fields must be
assigned individually.

There are two predeclared object types:
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ROOT The traced object type with no fields or methods
UNTRACED ROOT The untraced object type with no fields or methods

The declaration of an object type has the form:

TYPE T = ST OBJECT
Fields
METHODS
Methods
OVERRIDES
Overrides
END

whereST is an optional supertyp&ields is a list of field declarations, exactly as in a record typpethods is a
list of method declarationandOverrides is a list of method overridesThe fields ofT consist of the fields ofT
followed by the fields declared hields. The methods of consist of the methods &T modified byOverrides
and followed by the methods declaredMisthods. T has the same reference classas

The names introduced hields andMethods must be distinct from one another and from the names ovemidd
Overrides. If ST is omitted, it defaults t®&00T. If ST is untraced, then the fields must not include traced typdss(T
restriction is lifted in unsafe modules.)3f is declared as an opaque type, the declaratiahisiegal only in scopes
whereST’s concrete type is known to be an object type.

The keyworddBJECT can optionally be preceded bgEANDED” or by “BRANDED b”, whereb is a text constant. The
meaning is the same as in non-object reference types.

A method declaration has the form:
m sig := proc

wheren is an identifiersig is a procedure signature, apdoc is a top-level procedure constant. It specifies that

m method has signatukeig and valueproc. If “ := proc” is omitted, “:= NIL” is assumed. lproc is non-nil, its
first parameter must have mod&LUE and type some supertype Dfand dropping its first parameter must result in a
signature that is covered ki g.

A method override has the form:
m := proc

wheren is the name of a method of the supert@Teandproc is a top-level procedure constant. It specifies thatthe
method forT is proc, rather thar8T.m. If proc is non-nil, its first parameter must have mode.UE and type some
supertype off, and dropping its first parameter must result in a signatuseis covered by the signature &f's m
method.

Examples.Consider the following declarations:

TYPE
A = OBJECT a: INTEGER; METHODS p() END;
AB = A OBJECT b: INTEGER END;

PROCEDURE Pa(self: A) = ... ;
PROCEDURE Pab(self: AB) = ... ;

The procedureBa andPab are candidate values for themethods of objects of typesandAB. For example:

TYPE T1 = AB OBJECT OVERRIDES p := Pab END
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declares a type with akB data record and pmethod that expects am. T1 is a valid subtype ofB. Similarly,
TYPE T2 = A OBJECT OVERRIDES p := Pa END

declares a type with ah data record and a method that expecta\ar? is a valid subtype oh. A more interesting
example is:

TYPE T3 = AB OBJECT OVERRIDES p := Pa END

which declares a type with atB data record and a method that expects an Since evenaB is ana, the method is
not too choosy for the objects in which it will be placaw.is a valid subtype ofB. In contrast,

TYPE T4 = A OBJECT OVERRIDES p := Pab END

attempts to declare a type with amlata record and a method that expecta®grsince not every is anAB, the method
is too choosy for the objects in which it would be placed. Thelaration ofr4 is a static error.

The following example illustrates the difference betweenldring a new method and overriding an existing method.
After the declarations

TYPE
A = OBJECT METHODS m() := P END;
B = A OBJECT OVERRIDES m := Q END;
C = A OBJECT METHODS m() := Q END;
VAR

a := NEW(A); b := NEW(B); c := NEW(C);
we have that

a.m() activates P(a)
b.m() activates Q(b)
c.m() activates Q(c)

So far there is no difference between overriding and extendButc’s method suite has two methods, while has
only one, as can be revealedifindc are viewed as members of type

NARROW(b, A).m() activateQ(b)
NARROW(c, A).m() activate® (c)

HereNARROW is used to view a variable of a subtype as a value of its supertly is more often used for the opposite
purpose, when it requires a runtime check.

The last example uses object subtyping to define reusableegqueirst the interface:

TYPE
Queue = RECORD head, tail: QueueElem END;
QueueElem = 0OBJECT link: QueueElem END;

PROCEDURE Insert (VAR q: Queue; x: QueueElem);
PROCEDURE Delete (VAR q: Queue): QueueElem;
PROCEDURE Clear (VAR q: Queue);

Then an example client:
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TYPE

IntQueueElem = QueueElem OBJECT val: INTEGER END;
VAR

q: Queue;

x: IntQueueElem;

Clear(q);

x := NEW(IntQueueElem, val := 6);

Insert(q, x);

x := Delete(q)

Passing to Insert is safe, since everyntQueueElen iS aQueueElem. Assigning the result dfelete to x cannot
be guaranteed valid at compile-time, since other subtyp@a®ieElem can be inserted intq, but the assignment
will produce a checked runtime error if the source value issmmember of the target type. ThitstQueueElem bears
the same relation tQueueElem as[0. .9] bears taINTEGER.

2.2.10 Subtyping rules

We writeT <: Uto indicate thaf is a subtype ot andu is a supertype of.

If T <: U, then every value of typ® is also a value of typ8. The converse does not hold: for example, a record or
array type with packed fields contains the same values aothesponding type with unpacked fields, but there is no
subtype relation between them. This section presents tbg that define the subtyping relation.

For ordinal typeg andu, we haveT <: U if they have the same base type and every membgia member of.
That is, subtyping on ordinal types reflects the subsetiogla@in the value sets.

For array types,

(ARRAY OF)"m ARRAY J_1 OF ... ARRAY J_n OF
ARRAY K_1 OF ... ARRAY K. p OF T
<: (ARRAY OF)"m (ARRAY OF)"n
ARRAY I_1 OF ... ARRAY I p OF T

if NUMBER (I_i) = NUMBER(X_i) fori =1, ...,p.
That is, an array type is a subtype of an array typeif they have the same ultimate element type, the same number
of dimensions, and, for each dimension, either both are ¢geimn the firsim dimensions above), aris fixed andB
is open (as in the next dimensions above), or they are both fixed and have the saméasizn the lasp dimensions
above).

NULL <: REF T <: REFANY
NULL <: UNTRACED REF T <: ADDRESS

That is,REFANY andADDRESS contain all traced and untraced references, respectatpIL is a member of every
reference type. These rules also apply to branded types.

NULL <: PROCEDURE(A): R RAISES S foranyA,R, ands.
That is,NIL is a member of every procedure type.

PROCEDURE(A): Q RAISES E <: PROCEDURE(B): R RAISES F
if signature “(B) : R RAISES F” covers signature (A): Q RAISES E".
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That is, for procedure types, <: U if they are the same except for parameter names, defaultsagses sets, and the
raises set for is contained in the raises set far

ROOT <: REFANY
UNTRACED ROOT <: ADDRESS
NULL <: T OBJECT ... END <: T

That s, every objectis a referen¢é&L is a member of every object type, and every subtype is indirdis supertype.
The third rule also applies to branded types.

BITS n FOR T <: TandT <: BITS n FOR T
That is,BITS FOR T has the same valuesas

T <: TforallT
T <: UandU <: VvimpliesT <: vforall T, U,V.

That is,<: is reflexive and transitive.

Note thatT <: UandU <: T does not imply thaT andU are the same, since the subtype relation is unaffected by
parameter names, default values, and packing.

For example, consider:
TYPE
T = [0..255];
U = BITS 8 FOR [0..255];
AT = ARRAY OF T;
AU = ARRAY OF U;

The typesT andU are subtypes of one another but are not the same. The Afsd AU are unrelated by the subtype
relation.

2.2.11 Predeclared opaque types
The language predeclares the two types:

TEXT <: REFANY
MUTEX <: ROOT

which represent text strings and mutual exclusion semashoespectively. These are opaque types. Their properties
are specified in the required interfadast andThread.

2.3 Statements
Look into any carpenter’s tool-bag and see how many diftehermmers, chisels, planes and screw-

drivers he keeps there—not for ostentation or luxury, butlffferent sorts of jobs. —Robert Graves and
Alan Hodge

Executing a statement produces a computation that canrwlnél outcome), raise an exception, cause a checked
runtime error, or loop forever. If the outcome is an excaptibcan optionally be paired with an argument.
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We define the semantics BKIT andRETURN with exceptions called thexit-exceptiorand thereturn-exceptionThe
exit-exception takes no argument; the return-excepti@ast@n argument of arbitrary type. Programs cannot name
these exceptions explicitly.

Implementations should speed up normal outcomes at thensgmd exceptions (except for the return-exception and
exit-exception). Expending a thousand instructions peeption raised to save one instruction per procedure call
would be reasonable.

If an expression is evaluated as part of the execution oftaratnt, and the evaluation raises an exception, then the
exception becomes the outcome of the statement.

The empty statement is a no-op. In this report, empty stat&svege written(*skip*).

2.3.1 Assignment

To specify the typechecking of assignment statements we teedefine “assignable”, which is a relation between
types and types, between expressions and variables, anddyeexpressions and types.

A typeT is assignabldo a typeU if:

e T <: U,or

e U <: TandT is an array or a reference type other ta®DRESS (This restriction is lifted in unsafe modules.),
or

e T andU are ordinal types with at least one member in common.
An expressiore is assignabldo a variabley if:

e the type ofe is assignable to the type of and

¢ the value ofe is a member of the type aof, is not a local procedure, and if it is an array, then it hasstimae
shape as.

The first point can be checked statically; the others gelyereduire runtime checks. Since there is no way to deter-
mine statically whether the value of a procedure paramstecal or global, assigning a local procedure is a runtime
rather than a static error.

An expression e iassignablgo a typeT if e is assignable to some variable of typg(If T is not an open array type,
this is the same as saying thais assignable to any variable of typeg

An assignment statement has the form:
v = e

wherev is a writable designator andis an expression assignable to the variable designated blge statement sets
v to the value ofe. The order of evaluation of ande is undefined, bué will be evaluated before is updated. In
particular, ifv ande are overlapping subarrays, the assignment is performeaatim @ way that no element is used as
a target before it is used as a source.

Examples of assignments:

VAR
x: REFANY;
a: REF INTEGER;
b: REF BOOLEAN;
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a :=b; (% static error *)
x := a; (* no possible error x)
a := x (* possible checked runtime error *)

The same comments would applyxifhad an ordinal type with non-overlapping subrangemdb, or if x had an
object type anch andb had incompatible subtypes. The typBDRESS is treated differently from other reference
types, since a runtime check cannot be performed on theressig of raw addresses. For example:

VAR
x: ADDRESS;
a: UNTRACED REF INTEGER;
b: UNTRACED REF BOOLEAN;

a :=b; (x static error *)
x := a; (* no possible error *)
a = x (* static error in safe modules *)

2.3.2 Procedure call
A procedure call has the form;
P(Bindings)

whereP is a procedure-valued expression &iddings is a list ofkeywordor positionalbindings. A keyword binding
has the forrname := actual, whereactual is an expression angkme is an identifier. A positional binding has
the formactual, whereactual is an expression. When keyword and positional bindings axednin a call, the
positional bindings must precede the keyword bindings.héf list of bindings is empty, the parentheses are still
required.

The list of bindings is rewritten to fit the signature B$ type as follows: First, each positional bindiagtual is
converted and added to the list of keyword bindings by supglthe name of théth formal parameter, whergctual

is the i'th binding inBindings. Second, for each parameter that has a default and is notltadtar the first step, the
bindingname := default is added to the list of bindings, whetieme is the name of the parameter adeff ault is

its default value. The rewritten list of bindings must birmdyoformal parameters and must bind each formal parameter
exactly once. For example, suppose that the tyeisf

PROCEDURE(ch: CHAR; n: INTEGER := 0)

Then the following calls are all equivalent:

P(’a’, 0)

P(’a’)

P(ch := ’a’)

P(n := 0, ch := ’a’)
P(’a’, n := 0)

The callp () isillegal, since it doesn't bindh. The callP(n := 0, ’a’) isillegal, since it has a keyword parameter
before a positional parameter.

For aREADONLY or VALUE parameter, the actual can be any expression assignable tgpth of the formal (except
that the prohibition against assigning local procedureslaxed). For &AR parameter, the actual must be a writable
designator whose type is the same as that of the formal, ogda of &/AR array parameter, assignable to that of the
formal (see the section on designators).
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A VAR formal is bound to the variable designated by the corresipgratctual; that is, it is aliased. BALUE formal

is bound to a variable with an unused location and initiaifethe value of the corresponding actual RBADONLY
formal is treated as ®AR formal if the actual is a designator and the type of the adtutile same as the type of the
formal (or an array type that is assignable to the type of thmél); otherwise it is treated asVaLUE formal.

Implementations are allowed to forbidR or READONLY parameters of packed types.

To execute the call, the procedwand its arguments are evaluated, the formal parametereane pand the body of
the procedure is executed. The order of evaluatiop arfid its actual arguments is undefined. It is a checked runtime
error to call an undefined @¥L procedure.

It is a checked runtime error for a procedure to raise an akaepot included in its raises set (If an implementation
maps this runtime error into an exception, the exceptiomgicitly included in all RAISES clauses.) or for a function
procedure to fail to return a result.

A procedure call is a statement only if the procedure is propecall a function procedure and discard its result, use
EVAL.

A procedure call can also have the form:
o.m(Bindings)
whereo is an object ané. names one oé’s methods. This is equivalent to:

(o’s m method)o, Bindings)

2.3.3 Eval
An EVAL statement has the form:
EVAL e
wheree is an expression. The effect is to evaluatend ignore the result. For example:

EVAL Thread.Fork(p)

2.3.4 Block statement
A block statement has the form:
Decls BEGIN S END

whereDecls is a sequence of declarations &b a statement. The block introduces the constants, typeisbles,
and procedures declaredDacls and then executes The scope of the declared names is the block.

2.3.5 Sequential composition
A statement of the form:
S_1; S_2

executes_1, and then if the outcome is normal, execuges. If the outcome of_1 is an exceptionS_2 is ignored.

Some programmers use the semicolon as a statement termb@t® as a statement separator. Similarly, some use
the vertical bar in case statements as a case initiator, ssmaeseparator. Modula-3 allows both styles. This report
uses both operators as separators.
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2.3.6 Raise
A RAISE statement without an argument has the form:

RAISE e

wheree is an exception that takes no argument. The outcome of ttenstat is the exceptiom A RAISE statement
with an argument has the form:

RAISE e(x)

wheree is an exception that takes an argument ariglan expression assignableds argument type. The outcome
is the exceptiore paired with the argument

2.3.7 Try Except

A TRY-EXCEPT statement has the form:

TRY

Body
EXCEPT

id_1 (v_1) => Handler_1
|
| id_n (v_n) => Handler_n
ELSE Handler_O
END

whereBody and eachHandler are statements, eadld names an exception, and eachi is an identifier. The
“ELSE Handler_0" and each {v_i)” are optional. It is a static error for an exception to be ndmeore than
once in the list ofid’s.

The statement executBsdy. If the outcome is normal, the except clause is ignoreBodfy raises any listed exception
id_i, thenHandler_i is executed. 1Body raises any other exception anfL'SE Handler_0” is present, then it is
executed. In either case, the outcome of TRE statement is the outcome of the selected handleBodf; raises an
unlisted exception andELSE Handler_0” is absent, then the outcome of thiRY statement is the exception raised
by Body.

Each(v_i) declares a variable whose type is the argument type of trepérnid_i and whose scope imndler_i.
When an exceptiotd_i paired with an argument is handledy_: is initialized tox beforeHandler_i is executed.
It is a static error to includév_i) if exceptionid_: does not take an argument.

If (v_i) is absent, thend_i can be a list of exceptions separated by commas, as shoffitrazadst in which the rest
of the handler is repeated for each exception. That is:

id_1, ..., id_n => Handler
is shorthand for:
id_1 => Handler | ... | id_n => Handler

It is a checked runtime error to raise an exception outsidedymnamic scope of a handler for that exception. A
“TRY EXCEPT ELSE” counts as a handler for all exceptions.
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2.3.8 Try Finally
A statement of the form:
TRY S_1 FINALLY S_2 END
executes statemest 1 and then statemerst_2. If the outcome ofS_1 is normal, theTRY statement is equivalent

toS_1; S_2. If the outcome ofS_1 is an exception and the outcome f2 is normal, the exception frora_1 is
re-raised afteg_2 is executed. If both outcomes are exceptions, the outcortfee@RY is the exception frons_2.

2.3.9 Loop
A statement of the form:
LOOP S END
repeatedly executesuntil it raises the exit-exception. Informally it is like:

TRY S; S; S; ... EXCEPT exit-exception => (*skip*) END

2.3.10 Exit
The statement
EXIT

raises the exit-exception. AXIT statement must be textually enclosed iypaP, WHILE, REPEAT, or FOR Statement.

We defineEXIT andRETURN in terms of exceptions in order to specify their interactiwith the exception handling
statements. As a pathological example, consider the fallpwode, which is an elaborate infinite loop:

LOOP
TRY
TRY EXIT FINALLY RAISE E END
EXCEPT
E => (*skipx)
END
END

2.3.11 Return

A RETURN statement for a proper procedure has the form:
RETURN

The statement raises the return-exception without an azgtinit is allowed only in the body of a proper procedure.
A RETURN statement for a function procedure has the form:

RETURN Expr
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whereExpr is an expression assignable to the result type of the proeedine statement raises the return-exception
with the argumenExpr. It is allowed only in the body of a function procedure.

Failure to return a value from a function procedure is a cedckintime error.

The effect of raising the return exception is to terminage ¢hrrent procedure activation. To be precise, a call on a
proper procedure with bodyis equivalent (after binding the arguments) to:

TRY B EXCEPT return-exception => (*kskip*) END
A call on a function procedure with bodyis equivalent to:

TRY

B; (error: no returned value)
EXCEPT

return-exception (v) => (the result becomes v)
END

2.3.121f

An IF statement has the form:

IF B_1 THEN S_1
ELSIF B_2 THEN S_2

ELSIF B_n THEN S_n
ELSE S_0
END

where theB's are boolean expressions and #feare statements. Th&LSE S_0" and each ELSIF B_i THEN S_i”
are optional.

The statement evaluates this in order until someB_; evaluates tarRUE, and then executes_i. If none of the
expressions evaluates TRUE and “‘ELSE S_0" is present,S_0 is executed. If none of the expressions evaluates to
TRUE and “ELSE S_0" is absent, the statement is a no-op (except for any sicessfbf theB’s).

2.3.13 While

If B is an expression of typBOOLEAN ands is a statement:
WHILE B DO S END

is shorthand for:

LOOP IF B THEN S ELSE EXIT END END

2.3.14 Repeat

If B is an expression of typBOOLEAN ands is a statement:
REPEAT S UNTIL B
is shorthand for:

LOOP S; IF B THEN EXIT END END

25



2.3.15 With
A WITH statement has the form:
WITH id = e DO S END

whereid is an identifiere an expression, argla statement. The statement declarésvith scopes as an alias for the
variablee or as a readonly name for the valeieThe expressior is evaluated once, at entry to th&TH statement.

The statement is like the procedure @lk), whereP is declared as:
PROCEDURE P(mode id: type of e) = BEGIN S END P;
If e is a writable designator, mode ¥\R; otherwise, mode i®EADONLY. The only difference between th&TH

statement and the calle) is that free variableRETURNS, andEXITs that occur in th&ITH statement are interpreted
in the context of th&ITH statement, not in the context bf(see the section on designators).

A singleWITH can contain multiple bindings, which are evaluated sedalntThat is:

WITH id_1

e_1l, id_2 = e_2,

is equivalent to:

WITH id_1 e_1 DO
WITH id_2 = e_2 DO ...

2.3.16 For
A FOR statement has the form:
FOR id := first TO last BY step DO S END

whereid is an identifierfirst andlast are ordinal expressions with the same base typep is an integer-valued
expression, anfl is a statement.BY step” is optional; if omitted,step defaults tot.

The identifierid denotes a readonly variable whose scogeaad whose type is the common base typéifst and
last.

If id is an integer, the statement stesthrough the valuesirst, first+step, first+2#*step, ..., Stopping when
the value ofid passedast. S executes once for each value; if the sequence of values ityesnpever executes.
The expressionsirst, last, andstep are evaluated once, before the loop is enteredtéfp is negative, the loop
iterates downward.

The case in whichd is an element of an enumeration is similar. In either cagesémantics are defined precisely by
the following rewriting, in whichT is the type ofid and in whichi, done, anddelta stand for variables that do not
occur in theFOR statement:

VAR
i := ORD(first); done := ORD(last); delta := step;
BEGIN
IF delta >= 0 THEN
WHILE i <= done DO
WITH id = VAL(i, T) DO S END; INC(i, delta)
END
ELSE
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WHILE i >= done DO
WITH id = VAL(i, T) DO S END; INC(i, delta)
END
END
END

If the upper bound of the loop ISAST (INTEGER) or LAST (LONGINT), it should be rewritten as@HILE loop to avoid
overflow.

2.3.17 Case
A CASE statement has the form:

CASE Expr OF

L_1=>8S_1
|
| L.n => S_n
ELSE S_0
END

whereExpr is an expression whose type is an ordinal type and &dsha list of constant expressions or ranges of
constant expressions denoted lay f. .e_2", which represent the values from 1 to e_2 inclusive. Ife_1 exceeds
e_2, the range is empty. It is a static error if the sets represkhy any twad.'s overlap or if the value of any of the
constant expressions is not a member of the tyfExpt. The “ELSE S_0" is optional.

The statement evaluat&spr. If the resulting value is in any_i, thenS_i is executed. If the value is in rig_; and
“ELSE S_0"is present, thenitis executed. If the value is inlna@ and “‘ELSE S_0" is absent, a checked runtime error
occurs.

2.3.18 Typecase
A TYPECASE statement has the form:

TYPECASE Expr OF
T_1 (v_1) => S_1

| ...

| T_.n (v_n) => S_n

ELSE S_0O

END

whereExpr is an expression whose type is a reference typeS'thare statements, thes are reference types, and the
v's are identifiers. It is a static error ixpr has typeADDRESS or if any T is not a subtype of the type @kpr. The
“ELSE S_0" and each {v)" are optional.

The statement evaluatgsgpr. If the resulting reference value is a member of any listpe Ty i, thenS_i is executed,
for the minimum such. (Thus aNULL case is useful only if it comes first.) If the value is a memifermlisted type
and ‘ELSE S_0"is present, then it is executed. If the value is a member dfsted type and ELSE S_0" is absent,
a checked runtime error occurs.

Each(v_i) declares a variable whose typeTisi and whose scope & i. If v_i is present, it is initialized to the value
of Expr beforeS_i is executed.

If (v_i) is absent, thefi_i can be a list of type expressions separated by commas, dbatafor a list in which the
rest of the branch is repeated for each type expression.i¥hat
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T_1, ..., T_n => S
is shorthand for:
T 1=>S8 | ... | T_.n=>8
For example:
PROCEDURE ToText(r: REFANY): TEXT =
(* Assume r = NIL or r~ is a BOOLEAN or INTEGER. *)
BEGIN
TYPECASE r OF
NULL => RETURN "NIL"
| REF BOOLEAN (rb) => RETURN Fmt.Bool(rb~)
| REF INTEGER (ri) => RETURN Fmt.Int(ri~)

END
END ToText;

2.3.19 Lock
A LOCK statement has the form:
LOCK mu DO S END
wheres is a statement angh is an expression. It is equivalent to:
VAR m := mu; BEGIN
Thread.Acquire(m) ;
TRY S FINALLY Thread.Release(m) END

END

wherem stands for a variable that does not occusin

2.3.20 Inc and Dec
INC andDEC statements have the form:

INC(v, n)
DEC(v, n)

wherev designates a variable of an ordinal type arid an optional integer-valued argument. If omittediefaults to
1. The statements increment and decremdny n, respectively. The statements are equivalent to:

WITH x
WITH x

]
<
S
"

]

VAL(ORD(x) + n, T) END
= VAL(ORD(x) - n, T) END

]
<
S
»

|

whereT is the type ofy andx stands for a variable that does not appeat.iAs a consequence, the statements check
for range errors.

In unsafe moduleSNC andDEC are extended tADDRESS.
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2.4 Declarations
There are two basic methods of declaring high or low befoesstiowdown in all High-Low Poker games.

They are (1) simultaneous declarations, and (2) consegwtéclarations... It is a sad but true fact that
the consecutive method spoils the game. —John Scarne’s @uModern Poker

A declaration introduces a name for a constant, type, vigji&sxception, or procedure. The scope of the name is the
block containing the declaration. A block has the form:

Decls BEGIN S END
whereDecls is a sequence of declarations ahib a statement, the executable part of the block. A block paear
as a statement or as the body of a module or procedure. Tharakahs of a block can introduce a name at most
once, though a name can be redeclared in nested blocks, aodeipre declared in an interface can be redeclared in

a module exporting the interface. The order of declaratinrasblock does not matter, except to determine the order
of initialization of variables.

2.4.1 Types

If T is an identifier ands a type (or type expression, since a type expression is allawerever a type is required),
then:

TYPET =10

declared to be the typéy.

2.4.2 Constants
If id is an identifierT a type, and a constant expression, then:
CONST id: T = C

declaresid as a constant with the tyfeand the value of. The “: T” can be omitted, in which case the typeiefis
the type ofC. If T is present it must contaity

2.4.3 Variables
If id is an identifierT a non-empty type other than an open array type,Eaad expression, then:
VAR id: T := E
declaresid as a variable of typ& whose initial value is the value @. Either “:= E" or “: T” can be omitted, but

not both. IfT is omitted, it is taken to be the type Bf If E is omitted, the initial value is an arbitrary value of type
If both are preseng must be assignable ©

The initial value is a shorthand that is equivalent to iregrthe assignmeritd := E at the beginning of the executable
part of the block. If several variables have initial valud®ir assignments are inserted in the order they are déclare
For example:

VAR i: [0..5] := j; j: [0..5] := i; BEGIN S END
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initializes i and j to the same arbitrary value if0. . 5]; it is equivalent to:
VAR i: [0..5]; j: [0..5]; BEGIN i := j; j := i; S END

If a sequence of identifiers share the same type and initiakyad can be a list of identifiers separated by commas.
Such a list is shorthand for a list in which the type and ihitelue are repeated for each identifier. That is:

VAR v_1, ..., v.n: T := E
is shorthand for:
VAR v_1: T :=E; ...; VAR v_n: T :=E

This means that is evaluated n times.

2.4.4 Procedures

There are two forms of procedure declaration:
PROCEDURE id sig = B id
PROCEDURE id sig

whereid is an identifiersig is a procedure signature, aRds a block. In both cases, the typewf is the procedure
type determined byig. The first form is allowed only in modules; the second formllieveed only in interfaces.

The first form declaresd as a procedure constant whose signatusa gs whose body i®, and whose environment is
the scope containing the declaration. The parameter naradéeated as if they were declared at the outer levat of
the parameter types and default values are evaluated icdipe sontaining the procedure declaration. The procedure
nameid must be repeated after tE&D that terminates the body.

The second form declared to be a procedure constant whose signatues gs The procedure body is specified in a
module exporting the interface, by a declaration of the fosn.

2.4.5 Exceptions
If id is an identifier and’ a type other than an open array type, then:
EXCEPTION id(T)

declaresid as an exception with argument typelf “ (T)” is omitted, the exception takes no argument. An exception
declaration is allowed only in an interface or in the outestrazope of a module. All declared exceptions are distinct.

2.4.6 Opaque types

An opaque typés a name that denotes an unknown subtype of some givenmeéetype. For example, an opaque sub-
type of REFANY is an unknown traced reference type; an opaque subtypeT&ACED ROOT is an unknown untraced
object type. The actual type denoted by an opaque type napadiés itsconcrete type

Different scopes can reveal different information aboubpaque type. For example, what is known in one scope only
to be a subtype dfEFANY could be known in another scope to be a subtypr0ofT.

An opaque type declaration has the form:
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TYPE T <: U

whereT is an identifier and an expression denoting a reference type. It introducesaheen as an opaque type and
reveals that is a supertype of. The concrete type af must be revealed elsewhere in the program.

2.4.7 Revelations

A revelationintroduces information about an opaque type into a scopékéJother declarations, revelations introduce
Nno new names.

There are two kinds of revelationsartial andcomplete A program can contain any number of partial revelations for
an opaque type; it must contain exactly one complete revalat

A partial revelation has the form:
REVEAL T <: V

whereV is a type expression (possibly just a name) @nsd an identifier (possibly qualified) declared as an opaque
type. It reveals that is a supertype of.

In any scope, the revealed supertypes of an opaque type mlisehrly ordered by the subtype relation. That is, if it
is revealed thal <: U1 andT <: U2, it must also be revealed either tht <: U2 or thatU2 <: U1.

A complete revelation has the form:
REVEAL T =V

whereV is a type expression (not just a name) whose outermost typ&rector is a branded reference or object type
andT is an identifier (possibly qualified) that has been declasdraopaque type. The revelation specifies thiat
the concrete type fdr. It is a static error if any type revealed in any scope as arsype=of T is not a supertype of.
Generally this error is detected at link time.

Distinct opaque types have distinct concrete types, sirnineludes a brand and all brands in a program are distinct.

A revelation is allowed only in an interface or in the outesnscope of a module. A revelation in an interface can be
imported into any scope where it is required, as illustrégthe stack example.

For example, consider:
INTERFACE I; TYPE T <: ROOT; PROCEDURE P(x:T): T; END I.
INTERFACE IClass; IMPORT I; REVEAL I.T <: MUTEX; END IClass.
INTERFACE IRep; IMPORT I;
REVEAL I.T = MUTEX BRANDED OBJECT count: INTEGER END;
END IRep.
An importer ofI seedl . T as an opaque subtypeRd0T, and is limited to allocating objects of tyfie T, passing them

to I.P, or declaring subtypes af.T. An importer of IClass sees that every.T is aMUTEX, and can therefore lock
objects of typel . T. Finally, an importer offlRep sees the concrete type, and can accessdhet field.

2.4.8 Recursive declarations

A constant, type, or procedure declaratiors E, a variable declaratioN: E, an exception declaratian(g), or a
revelationN = E is recursiveif N occurs in any partial expansion Bf A variable declaratiol := I where the type
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is omitted is recursive ifi occurs in any partial expansion of the typ@f I. Such declarations are allowed if every
occurrence off in any partial expansion &fis (1) within some occurrence of the type construg¥ or PROCEDURE,
(2) within a field or method type of the type construcddBJECT, or (3) within a procedure body.

Examples of legal recursive declarations:

TYPE
List = REF RECORD x: REAL; link: List END;
T = PROCEDURE(n: INTEGER; p: T);
XList = X OBJECT link: XList END;
CONST N = BYTESIZE(REF ARRAY [0..N] OF REAL);
PROCEDURE P(b: BOOLEAN) = BEGIN IF b THEN P(NOT b) END END P;
EXCEPTION E(PROCEDURE () RAISES {E});
VAR v: REF ARRAY [0..BYTESIZE(v)] OF INTEGER;

Examples of illegal recursive declarations:

TYPE
T = RECORD x: T END;
U = OBJECT METHODS m() := U.m END;
CONST N = N+1;
REVEAL I.T = I.T BRANDED OBJECT END;
VAR v := P(); PROCEDURE P(): ARRAY [0..LAST(v)] OF T;

Examples of legal non-recursive declarations:

VAR n := BITSIZE(n);
REVEAL T <: T;

2.5 Modules and interfaces

Art, it seems to me, should simplify. That, indeed, is veaylneéhe whole of the higher artistic process;
finding what conventions of form and what detail one can dbaut and yet preserve the spirit of the
whole. —Willa Cather

A moduleis like a block, except for the visibility of names. An entigyvisible in a block if it is declared in the block
or in some enclosing block; an entity is visible in a modulé i& declared in the module or in an interface that is
imported or exported by the module.

An interfaceis a group of declarations. Declarations in interfaces la@esame as in blocks, except that any variable
initializations must be constant, and procedure decltamatmust specify only the signature, not the body.

A moduleX exportsan interfacel to supply bodies for one or more of the procedures declargderinterface. A
module or interfac& importsan interfacel to make the entities declaredirvisible inX.

A programis a collection of modules and interfaces that containsyeweerface imported or exported by any of its
modules or interfaces, and in which no procedure, moduleterface is multiply defined. The effect of executing a
program is to execute the bodies of each of its modules. Tdher af execution of the modules is constrained by the
initialization rule.

The module whose body is executed last is callechthé module Implementations are expected to provide a way to
specify the main module, in case the initialization rulegloet determine it uniquely. The recommended rule is that
the main module be the one that exports the interfade, whose contents are implementation-dependent.

Program execution terminates when the body of the main nedduininates, even if concurrent threads of control are
still executing.
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The names of the modules and interfaces of a program arelcitibal names. The method for looking up global
names—for example, by file system search paths—is implenemtdépendent.

2.5.1 Import statements

There are two forms of import statements. Allimports of biottms are interpreted simultaneously: their order doesn't
matter.

The first form is
IMPORT I AS J
which imports the interface whose global name &nd gives it the local name The entities and revelations declared

in I become accessible in the importing module or interfacetimientities and revelations imported iritalo not.
To refer to the entity declared with nartién the interfacet, the importer must use thgalified identifierJ . N.

The statementMPORT I is short forIMPORT I AS I.
The second form is

FROM I IMPORT N

which introducesi as the local nhame for the entity declaredMam the interfaceI. A local binding forI takes
precedence over a global binding. For example,

IMPORT I AS J, J AS I; FROM I IMPORT N

simultaneously introduces local names, andN for the entities whose global names arel, andJ. N, respectively.
Itis illegal to use the same local name twice:

IMPORT J AS I, K AS I;

is a static error, even if andk are the same.

2.5.2 Interfaces
An interface has the form:
INTERFACE id;
Imports;

Decls
END id.

whereid is an identifier that names the interfateports is a sequence of import statements, Badls is a sequence

of declarations that contains no procedure bodies or nastaat variable initializations. The names declarezkitl s
and the visible imported names must be distinct. It is acstatior for two or more interfaces to form an import cycle.

2.5.3 Modules

A module has the form:
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MODULE id EXPORTS Interfaces;
Imports;
Block id.

whereid is an identifier that names the moduleterfaces is a list of distinct names of interfaces exported by the
module,Imports is a list of import statements, ald ock is a block, thebodyof the module. The nami&d must be
repeated after theND that terminates the bodyEXPORTS Interfaces” can be omitted, in which casenterfaces
defaults toid.

If module M exports interfacd, then all declared nhames ihare visible without qualification in. Any procedure
declared inI can be redeclared M, with a body. The signature im must be covered by the signaturelinTo

determine the interpretation of keyword bindings and patemdefaults in calls to the procedure, the signatuteisn
used within; the signature irt is used everywhere else.

Except for the redeclaration of exported procedures, theesaleclared at the top levelBifock, the visible imported
names, and the names declared in the exported interfacedendistinct.

For example, the following is illegal, since two names in@xed interfaces coincide:

INTERFACE I;
PROCEDURE X Q) ;

INTERFACE J;
PROCEDURE X();

MODULE M EXPORTS I, J;
PROCEDURE X() = ...;

The following is also illegal, since the visible importedmax coincides with the top-level nan¥e

INTERFACE I;
PROCEDURE X();

MODULE M EXPORTS I;
FROM I IMPORT X;
PROCEDURE X() = ...;

But the following is legal, although peculiar:

INTERFACE I;
PROCEDURE X(...);

MODULE M EXPORTS I;
IMPORT I;
PROCEDURE X(...) = ...;
since the only visible imported namelsand the coincidence betwe#ras a top-level name arflas a name in an

exported interface is allowed, assuming the interfaceadige covers the module signature. Withinthe interface
declaration determines the signatureoX and the module declaration determines the signatuxe of

2.5.4 Example module and interface

Here is the canonical example of a public stack with hidd@nesentation:
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INTERFACE Stack;
TYPE T <: REFANY;
PROCEDURE Create(): T;
PROCEDURE Push(VAR s: T; x: REAL);
PROCEDURE Pop(VAR s: T): REAL;
END Stack.

MODULE Stack;
REVEAL T = BRANDED OBJECT item: REAL; link: T END;
PROCEDURE Create(): T = BEGIN RETURN NIL END Create;

PROCEDURE Push(VAR s: T; x: REAL) =
BEGIN
s := NEW(T, item := x, link := s)
END Push;

PROCEDURE Pop(VAR s: T): REAL =
VAR res: REAL;
BEGIN
res := s.item; s := s.link; RETURN res
END Pop;

BEGIN
END Stack.

If the representation of stacks is required in more than ooéule, it should be moved to a private interface, so that it
can be imported wherever it is required:

INTERFACE Stack (* ... as before ... *) END Stack.

INTERFACE StackRep; IMPORT Stack;
REVEAL Stack.T = BRANDED OBJECT item: REAL; link: Stack.T END
END StackRep.

MODULE Stack; IMPORT StackRep;

(* Push, Pop, and Create as before *)
BEGIN
END Stack.

2.5.5 Generics

In a generic interface or module, some of the imported iaterfnames are treated as formal parameters, to be bound
to actual interfaces when the generic is instantiated.

A generic interface has the form

GENERIC INTERFACE G(F_1, ..., F_n);
Body
END G.
wheregG is an identifier that names the generic interfagel, ..., F_n is a list of identifiers, called the formal

imports ofG, andBody is a sequence of imports followed by a sequence of declastiexactly as in a non-generic
interface.
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An instance of; has the form
INTERFACE I = G(A_1, ..., A_n) END I.

wherel is the name of the instance and1, ..., A_nis alist of actual interfaces to which the formal importgof
are bound. The instandeis equivalent to an ordinary interface defined as follows:

INTERFACE I;
IMPORT A_1 AS F_1, ..., A_n AS F_n;
Body

END I.

A generic module has the form

GENERIC MODULE G(F_1, ..., F_n);
Body
END G.
whereG is an identifier that names the generic modw®e1, ..., F_n is a list of identifiers, called the formal

imports ofG, andBody is a sequence of imports followed by a block, exactly as inmgeneric module.
An instance of; has the form

MODULE I EXPORTS E = G(A_1, ..., A_n) END I.

whereI is the name of the instancg,is a list of interfaces exported by, andA_1, ..., A_nis a list of actual
interfaces to which the formal imports afare bound. EXPORTS E” can be omitted, in which case it defaults to
“EXPORTS I”. The instance is equivalent to an ordinary module defined as follows:

MODULE I EXPORTS E;
IMPORT A_1 AS F_1, ..., A_n AS F_n;
Body

END I.

Notice that the generic module itself has no exports; theysapplied only when it is instantiated.
For example, here is a generic stack package:

GENERIC INTERFACE Stack(Elem);
(* where Elem.T is not an open array type. *)
TYPE T <: REFANY;
PROCEDURE Create(): T;
PROCEDURE Push(VAR s: T; x: Elem.T);
PROCEDURE Pop(VAR s: T): Elem.T;

END Stack.

GENERIC MODULE Stack(Elem);

REVEAL
T = BRANDED OBJECT n: INTEGER; a: REF ARRAY OF Elem.T END;

PROCEDURE Create(): T =
BEGIN RETURN NEW(T, n := 0, a := NIL) END Create;
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PROCEDURE Push(VAR s: T; x: Elem.T) =
BEGIN
IF s.a = NIL THEN
s.a := NEW(REF ARRAY OF Elem.T, 5)
ELSIF s.n > LAST(s.a") THEN
WITH temp = NEW(REF ARRAY OF Elem.T, 2 * NUMBER(s.a")) DO
FOR i := 0 TO LAST(s.a") DO temp[i] := s.a[il] END;

s.a := temp
END
END;
s.als.n] := x;
INC(s.n)
END Push;

PROCEDURE Pop(VAR s: T): Elem.T =
BEGIN DEC(s.n); RETURN s.a[s.n] END Pop;

BEGIN
END Stack.

To instantiate these generics to produce stacks of integers

INTERFACE Integer; TYPE T = INTEGER; END Integer.
INTERFACE IntStack = Stack(Integer) END IntStack.
MODULE IntStack = Stack(Integer) END IntStack.

Implementations are not expected to share code betweendtiffinstances of a generic module, since this will not be
possible in general.

Implementations are not required to typecheck uninsttatigenerics, but they must typecheck their instances. For
example, if one made the following mistake:

INTERFACE String; TYPE T = ARRAY OF CHAR; END String.
INTERFACE StringStack = Stack(String) END StringStack.
MODULE StringStack = Stack(String) END StringStack.

everything would go well until the last line, when the corepilvould attempt to compile a version®fack in which
the element type was an open array. It would then complatrthile®EW call in Push does not have enough parameters.

2.5.6 Initialization

The order of execution of the modules in a program is comstthby the following rule:
If moduleM depends on moduleéandN does not depend afy thenN’s body will be executed befoi®s body, where:

e A moduleM depends oa moduleN if M uses an interface thatexports or ifM depends on a module that depends
onN.

e A moduleM usesan interfacel if M imports or exportd or if M uses an interface that (directly or indirectly)
importsI.

Except for this constraint, the order of execution is impdeation-dependent.
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2.5.7 Safety

The keywordUNSAFE can precede the declaration of any interface or module toatelthat it isunsafe that is, uses
the unsafe features of the language. An interface or modilexplicitly labeledUNSAFE is calledsafe

An interface isintrinsically safeif there is no way to produce an unchecked runtime error bgguie interface in

a safe module. If all modules that export a safe interfacesafe, the compiler guarantees the intrinsic safety of the
interface. If any of the modules that export a safe interreeunsafe, it is the programmer, rather than the compiler,
who makes the guarantee.

It is a static error for a safe interface to import an unsafe onfor a safe module to import or export an unsafe
interface.

2.6 Expressions

The rules of logical syntax must follow of themselves, if nlg know how every single sign signifies.
—Ludwig Wittgenstein

An expression prescribes a computation that produces & walvariable. Syntactically, an expression is either an
operand, or an operation applied to arguments, which amdblwes expressions. Operands are identifiers, litenals, o
types. An expression is evaluated by recursively evalgatsarguments and performing the operation. The order of
argument evaluation is undefined for all operations exasptandoR.

2.6.1 Conventions for describing operations

To describe the argument and result types of operations se@ unotation like procedure signatures. But since most
operations are too general to be described by a Modula-2gdtwe signature, we extend the notation in several ways.

The argument to an operation can be required to have a typpdrtiaular class, such as an ordinal type, set type, etc.
In this case the formal specifies a type class instead of a Bgreexample:

ORD (x: Ordinal): Integer

The formal typeAny specifies an argument of any type.

A single operation name can be overloaded, which meansttdahbtes more than one operation. In this case, we
write a separate signature for each of the operations. Fonple:

ABS (x: Integer) : Integer
(x: Float) : Float

The particular operation will be selected so that each &egmment type is a subtype of the corresponding formal
type or a member of the corresponding formal type class. S¢lexction is always unambiguous.

The argument to an operation can be an expression denotypg alh this case, we writeype as the argument type.
For example:

BYTESIZE (T: Type): CARDINAL

The result type of an operation can depend on its argumen¢sdalthough the result type can always be determined
statically). In this case, the expression for the resuletypntains the appropriate arguments. For example:

FIRST (T: FixedArrayType): IndexType(T)

IndexType (T) denotes the index type of the array typandIndexType (a) denotes the index type of the array
The definitions oElemType (T) andElemType (a) are similar.
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2.6.2 Operation syntax

The operators that have special syntax are classified agd lis order of decreasing binding power in the following
table:

X.a infix dot

f(x) alil T{x} applicative(, [, {
p” postfix -

+ - prefix arithmetics
* / DIV MOD infix arithmetics
+ - & infix arithmetics
= # < <= >= > IN infix relations
NOT prefix NOT

AND infix AND

OR infix OR

All infix operators are left associative. Parentheses candegl to override the precedence rules. Here are some
examples of expressions together with their fully paresittes] forms:

M.F(x) M.F) (x) dot before application
Q)" @M~ application before
-p ) ~ before prefix-
-axb (-a) *xb prefix - beforex
a*xb-c (a*b) -c * before infix-

x INs -t x IN (s - t) infix - beforeIN

NOT x IN s NOT (x IN s) IN beforeNOT
NOT p AND q  (NOT p) AND q  NOT beforeAND
AORBAND C A OR (B AND C) AND beforeOR

Operators without special syntax ggecedural An application of a procedural operator has the fap{args),
whereop is the operation andrgs is the list of argument expressions. For examplk andMIN are procedural
operators.

2.6.3 Designators

An identifier is awritable designatorif it is declared as a variable, is &R or VALUE parameter, is a local of a
TYPECASE or TRY-EXCEPT statement, or is &ITH local that is bound to a writable designator. An identifieais
readonly designatoif it is a READONLY parameter, a local of &0R statement, or &ITH local bound to a non-
designator or readonly designator.

The only operations that produce designators are derefiegensubscripting, selection, arsBARRAY. This sec-
tion defines these operations and specifies the conditiathsr wrhich they produce designators. In unsafe modules,
LOOPHOLE can also produce a designator.

r
denotes the the referent of this operation is calledereferencing The expressior~ is always a writable
designator. Itis a static error if the typeofs REFANY, ADDRESS, NULL, an object type, or an opaque type, and
a checked runtime error if is NIL. The type ofr~ is the referent type of.

alil
denotes th&i + 1 - FIRST(a))-th element of the array. The expressioa[i] is a designator it is, and
is writable ifa is. The expressioth must be assignable to the index typeaofThe type ofa[i] is the element
type ofa.
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An expression of the form[i_1, ..., i_n] is shorthand fom[i_1]...[i_n]. If a is a reference to an
array, thema[i] is shorthand for~ [i].

r.f,0.f,I.x,T.m,E.id
If r denotes a record,. £ denotes it field. In this caser . £ is a designator it is, and is writable ifc is. The
type ofr. f is the declared type of the field.

If r is a reference to a record, thenf is shorthand for~ . £.

If o denotes an object ardnames a data field specified in the typeoptheno . f denotes that data field of
In this case> . f is a writable designator whose type is the declared typeeofigid.

If I denotes an imported interface, thernx denotes the entity namedin the interfacel. In this casel.x is a
designator ifz is declared as a variable; such a designator is always J&itab

If T is an object type and is the name of one df’'s methods, therT.m denotes the m method of tyfTe In
this caseT .m is not a designator. Its type is the procedure type whosedfigstment has modéALUE and type
T, and whose remaining arguments are determined by the mdtwdration fom in T. The name of the first
argument is unspecified; thus in callsTtan, this argument must be given positionally, not by keywardn is
a procedure constant.

If E is an enumerated type, th&nid denotes its value nameid. In this caseE.id is not a designator. The
type ofE.id iSE.

SUBARRAY(a: Array; from, for: CARDINAL): ARRAY OF ElemType(a)
SUBARRAY produces a subarray af It does not copy the array; it is a designatos i, and is writable ifa is.
If ais a multi-dimensional arragUBARRAY applies only to the top-level array.

The operation returns the subarray that skips the firsth elements ok and contains the nextor elements.
Note that iffrom is zero, the subarray is a prefix @fwhether the type of is zero-based or not. It is a checked
runtime error iffrom+for exceed$lUMBER (a).

Implementations may restrict or prohibit tBBBARRAY operation for arrays with packed element types.

2.6.4 Numeric literals

Numeric literals denote constant non-negative integergals. The types of these literals amTEGER, LONGINT,
REAL, LONGREAL, andEXTENDED.

A literal INTEGER has the fornmbase_digits, wherebase is one of 2", “ 3", ..., “16”, anddigits is a non-empty
sequence of the decimal digitsthrough9 plus the hexadecimal digitsthroughF. The “pase_" can be omitted, in
which casebase defaults to10. The digits are interpreted in the given base. Each digittinedess thamase. For

example,16_FF and255 are equivalent integer literals.

If no explicit base is present, the value of the literal mesabmosLAST (INTEGER) . If an explicit base is present, the
value of the literal must be less thanword.Size, and its interpretation uses the convention ofthed interface.
For example, on a 32-bit two’s complement machit&e FFFFFFFF and-1 represent the same value.

A literal LONGINT has the forminteger L, whereinteger has the same form as a literBENTEGER. If no explicit
base is present, the value of the literal must be at m&sT (LONGINT). If an explicit base is present, the value of the
literal must be less tha®rLong . Size, and its interpretation uses the convention ofitheg interface. For example,
the LONGINT having the value zero would be written.

A literal REAL has the formiecimal E exponent, wheredecimal is a hon-empty sequence of decimal digits fol-
lowed by a decimal point followed by a non-empty sequenceeairdal digits, ancdexponent is a hon-empty se-
guence of decimal digits optionally beginning with+ar -. The literal denoteglecimal times10~exponent. If

“E exponent” is omitted,exponent defaults to0.

LONGREAL andEXTENDED literals are likeREAL literals, but instead df they useD andX respectively.
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Case is not significant in any letter in a numeric literal. Eohbed spaces are not allowed in a numeric literal.
For examplet.0 and0.5 are valid,1. and.5 are not;6.624E-27 is aREAL, and3.1415926535d0 a LONGREAL.

2.6.5 Text and character literals

A character literal is a pair of single quotes enclosingezithsingle ISO-Latin-1 printing character (excluding &ng
guote) or an escape sequence. The type of a character it €HlR.

A text literal is a pair of double quotes enclosing a sequafd&O-Latin-1 printing characters (excluding double
guote) and escape sequences. The type of a text litefBKiE

Here are are the legal escape sequences and the charaeyaisitlote:

\n newline (linefeed) \f form feed

\t tab A\ backslash

\r carriage return \" double quote

\’ single quote \nnn char with code3_nnn

\Xnn char with codel6_nn

A \ followed by exactly three octal digits specifies the chaaethose code is that octal value. \& followed by
exactly two hexadecimal digits specifies the character wltosle is that hexadecimal value. The hexadecimal digits
are case-insensitive. The "X’ in a hexadecimal escape s®guis case-insensitive. QAthat is not a part of one of
these escape sequences is a static error.

A wide character literal has the foréh charlit, wherecharlit is like a character literal, except that an octal escape
sequence within must have exactly six octal digits and adesienal escape sequence within must have exactly four
hexadecimal digits. The type of a wide character literalliBECHAR. The leading 'W’ is case-insensitive.

Similarly, a wide text literal has the form text1lit, wheretextlit is like a text literal, except any octal or hexadec-
imal escape sequences within must have exactly six octauwrifexadecimal digits, respectively. Unlike character
literals, ordinary text literals and wide text literals bdtave the typ&EXT, differing only in the method of specifying
the literal's value. The leading 'W’ is case-insensitive.

For example,’a’ and’\’’ are valid character literals,’ > is not; "" and"Don’t\n" are valid text literals!'"" is
not.

2.6.6 Nil

The literal ‘NIL” denotes the valu®IL. Its type iSNULL.

2.6.7 Function application

A procedure call is an expression if the procedure returesalt. The type of the expression is the result type of the
procedure.

2.6.8 Set, array, and record constructors
A set constructor has the form:
S{e_1, ..., e_n}

wheres is a set type and the's are expressions or ranges of the form. .hi. The constructor denotes a value of
types containing the listed values and the values in the listedeanThes's, 10’s, andhi’s must be assignable to the
element type o§.
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An array constructor has the form:
A{e_1, ..., e_n}

whereA is an array type and th&s are expressions. The constructor denotes a value ofatyjmataining the listed
elements in the listed order. Thés must be assignable to the element typelofrhis means that ift is a multi-
dimensional array, the’'s must themselves be array-valued expressions.

If Ais a fixed array type andlis at leastt, thene_n can be followed by | ..” to indicate that the value af_n will
be replicated as many times as necessary to fill out the dtiiaya static error to provide too many or too few elements
for a fixed array type.

A record constructor has the form:
R{Bindings}

wherer is a record type anBindings is a list of keyword or positional bindings, exactly as in agedure call. The
list of bindings is rewritten to fit the list of fields and defsuof R, exactly as for a procedure call; the record field
names play the role of the procedure formal parameters. HApregsion denotes a value of typevhose field values
are specified by the rewritten binding.

The rewritten binding must bind only field names and must leiach field name exactly once. Each expression in the
binding must be assignable to the type of the correspondiogrd field.

2.6.9 New
An allocation operation has the form:
NEW(T, ...)

whereT is a reference type other th&EFANY, ADDRESS, or NULL. The operation returns the address of a newly-
allocated variable of’s referent type; or ifT is an object type, a newly-allocated data record paired withethod
suite. The reference returned kW is distinct from all existing references. The allocatedetyh the new reference is
T.

Itis a static error ifl’s referent type is empty. If is declared as an opaque typew (T) is legal only in scopes where
T's concrete type is known completely, or is known to be andttjgpe.

The initial state of the referent generally represents bitrary value of its type. I is an object type or a reference
to a record or open array th&iEw takes additional arguments to control the initial statehefriew variable.

If T is a reference to an array withopen dimensions, tHeEw operation has the form:
NEW(T, n_1, ..., n_k)

where then's are integer-valued expressions that specify the lengtlise new array in its firsk dimensions. The
values in the array will be arbitrary values of their type.

If T is an object type or a reference to a record,\ti& operation has the form:
NEW(T, Bindings)

whereBindings is a list of keyword bindings used to initialize the new fiel@®sitional bindings are not allowed.

Each bindingt := v initializes the fieldf to the valuev. Fields for which no binding is supplied will be initialized
to their defaults if they have defaults; otherwise they Wélinitialized to arbitrary values of their types.
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The order of the field bindings makes no difference.

If T is an object type theRindings can also include method overrides of the fatm = P, wherem is a method of
T andP is a top-level procedure constant. This is syntactic sugathie allocation of a subtype @fthat includes the
given overrides, in the given order. For exampiey (T, m := P) is sugar for

NEW(T OBJECT OVERRIDES m := P END).

2.6.10 Arithmetic operations

The basic arithmetic operations are built into the languadditional operations are provided by the required flaatin
point interfaces.

To test or set the implementation’s behavior for overflondenfiow, rounding, and division by zero, see the required
interfaceFloatMode. Modula-3 arithmetic was designed to support the IEEE figafioint standard, but not to require
it.

To perform arithmetic operations modulo the word size, pots should use the routines in the required interface
Word.

Implementations must not rearrange the computation ofesgions in a way that could affect the result. For example,
(x+y)+z generally cannot be computed &as(y+z), since addition is not associative either for bounded mtegr
for floating-point values.

prefix + (x: Integer) : Integer
(x: Float) : Float

infix + (x,y: Integer) : Integer
(x,y: Float) : Float
(x,y: Set) : Set

As a prefix operatorx returnsx. As an infix operator on numeric argumentgenotes addition. On setsdenotes
setunion. Thatise IN (x + y) ifand onlyif (e IN x) OR (e IN y). The types ok andy must be the same,
and the result is the same type as both. In unsafe moduis®xtended taDDRESS.

prefix - (x: Integer) : Integer
(x: Float) : Float

infix - (x,y: Integer) : Integer
(x,y: Float) : Float
(x,y: Set) : Set

As a prefix operatorsx is the negative ok. As an infix operator on numeric argumertsjenotes subtraction. On
sets,- denotes set difference. Thatés,IN (x - y) ifand only if (e IN x) AND NOT (e IN y). The types ok
andy must be the same, and the result is the same type as both.dfeumsdules; is extended taDDRESS.

infix * (x,y: Integer) : Integer
(x,y: Float) : Float
(x,y: Set) : Set

On numeric arguments,denotes multiplication. On setsdenotes intersection. That is,IN (x * y) if and only
if (e IN x) AND (e IN y). The types ok andy must be the same, and the result is the same type as both.

infix / (x,y: Float) : Float
(x,y: Set) : Set
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On reals,/ denotes division. On setg, denotes symmetric difference. That is,IN (x / y) if and only if
(e IN x) # (e IN y). Thetypes ok andy must be the same, and the result is the same type as both.

infix DIV (x,y: Integer) : Integer
infix MOD (x,y: Integer) : Integer
(x,y: Float) : Float

The valuex DIV y is the floor of the quotient af andy; that is, the maximum integer not exceeding the real number
z such that * y = x. For integerx andy, the value ok MOD y is definedtobe: - y * (x DIV y).

This means that for positivg the value ok MOD y lies in the intervall0 .. y-1], regardless of the sign af For
negativey, the value ok MOD y lies in the intervally+1 .. 01, regardless of the sign af

If x andy are floats, the value of MOD y isx - y * FLOOR(x / y). This may be computed as a Modula-3
expression, or by a method that avoids overflow i§ much greater than y. The types:oandy must be the same,
and the result is the same type as both.

ABS (x: Integer) : Integer
(x: Float) : Float

ABS (x) is the absolute value of. The type ofABS (x) is the same as the type of

REAL): T
REAL): T

FLOAT (x: Integer; T: Type :
(x: Float; T: Type :

FLOAT(x, T) is a floating-point value of typ& that is equal to or very near. The typeT must be a floating-point
type; it defaults toREAL. The exact semantics depend on the thread’s current rogimdode, as explained in the
required interfac&@loatMode.

FLOOR (x: Float; T: Type := INTEGER): T
CEILING (x: Float; T: Type := INTEGER): T

FLOOR (x) is the greatest integer not exceedingEILING (x) is the least integer not less thanThe typeT must be
an integer type; it defaults tthTEGER.

ROUND (r: Float; T: Type := INTEGER): T
TRUNC (r: Float; T: Type := INTEGER): T

ROUND (r) is the nearest integer g ties are broken according to the const@mindDefault in the required interface
FloatMode. TRUNC(r) roundsr toward zero; it equalBLOOR (r) for positiver andCEILING (r) for negativer. The
typeT must be an integer type; it defaultsINTEGER.

MAX,MIN (x,y: Ordinal) : Ordinal
(x,y: Float) : Float

MAX returns the greater of the two valuesindy; MIN returns the lesser. ¥ andy are ordinals, they must have the
same base type, which is the type of the result. dhdy are floats, they must have the same type, and the result is the
same type as both.
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2.6.11 Relations

infix = # (x, y: Any): BOOLEAN

The operator returnsTRUE if x andy are equal. The operat#rreturnsTRUE if x andy are not equal. It is a static
error if the type of is not assignable to the type pfor vice versa.

Ordinals are equal if they have the same value. Floats am& édbe underlying implementation defines them to be;
for example, on an IEEE implementatiorg equals-0 andNaN does not equal itself. References are equal if they
address the same location. Procedures are equal if theg agreosures; that is, if they refer to the same procedure
body and environment. Sets are equal if they have the samests. Arrays are equal if they have the same length
and corresponding elements are equal. Records are eqhalyihive the same fields and corresponding fields are
equal.

infix <=,>= (x,y: Ordinal) : BOOLEAN
(x,y: Float) : BOOLEAN
(x,y: ADDRESS) : BOOLEAN
(x,y: Set) : BOOLEAN

In the first three casesF returnsTRUE if x is at most as large as In the last cases= returnsTRUE if every element
of x is an element of. In all cases, it is a static error if the typeofs not assignable to the type pf or vice versa.
The expressior >= y is equivalenttgy <= x.

infix >,< (x,y: Ordinal) : BOOLEAN
(x,y: Float) : BOOLEAN
(x,y: ADDRESS) : BOOLEAN
(x,y: Set) : BOOLEAN

In all casesx < y means(x $<$= y) AND (x \# y),andx > y meansy < x. Itis a static error if the type af
is not assignable to the type pfor vice versa.

Warning: with IEEE floating-pointg <= y is not the same a#0T x > y.
infix IN (e: Ordinal; s: Set): BOOLEAN

ReturnsTRUE if e is an element of the seat It is a static error if the type of is not assignable to the element type of
s. If the value ofe is not a member of the element type, no error occursIbueturnsFALSE.

2.6.12 Boolean operations

prefix NOT (p: BOOLEAN) : BOOLEAN
infix AND (p,q: BOOLEAN) : BOOLEAN
infix OR (p,q: BOOLEAN) : BOOLEAN

NOT p is the complement gs.
p AND qis TRUE if both p andq areTRUE. If p is FALSE, q is not evaluated.
p OR qis TRUE if at least one op andq is TRUE. If p is TRUE, q is not evaluated.
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2.6.13 Type operations

ISTYPE (x: Reference; T: RefType) : BOOLEAN

ISTYPE(x, T) is TRUE if and only if x is a member off. T must be an object type or traced reference type,sand
must be assignable ©

NARROW (x: Reference; T: RefType): T

NARROW(x, T) returnsx after checking that is a member of. If the check fails, a runtime error occurBmust be
an object type or traced reference type, amdust be assignable ©

TYPECODE (T: RefType) : CARDINAL
(r: REFANY) : CARDINAL
(r: UNTRACED ROOT) : CARDINAL

Every object type or traced reference type (including NUbas an associated integer code. Different types have
different codes. The code for a type is constant for any siegkcution of a program, but may differ for different
executions. TYPECODE(T) returns the code for the type T alBHCODE(r) returns the code for the allocated type
of r. Itis a static error if T is REFANY or is not an object typetoaced reference type.

ORD (element: Ordinal): INTEGER
VAL (i: INTEGER; T: OrdinalType): T

ORD converts an element of an enumeration to the integer thatsepts its position in the enumeration order. The
first value in any enumeration is represented by zero. Ifype bfelement is a subrange of an enumerationthe
result is the position of the element withinnot within the subrange.

VAL is the inverse ofRD; it converts from a numeric position into the element that occupies that position in an
enumeration. Iff is a subrangeyAL returns the element with the positiarin the original enumeration type, not the
subrange. Itis a checked runtime error for the value @f be out of range foT.

If nis an integer of typ&, ORD(n) = VAL(n, T) = n.

NUMBER (T: OrdinalType) : CARDINAL
(A: FixedArrayType) : CARDINAL
(a: Array) : CARDINAL

For an ordinal typ&, NUMBER (T) returns the number of elementslinFor a fixed array typ&, NUMBER (A) is defined
by NUMBER (IndexType (A)). Similarly, for an arraya, NUMBER (a) is defined byWUMBER (IndexType(a)). In this
case, the expressieanwill be evaluated only if it denotes an open array.

FIRST (T: OrdinalType) : BaseType(T)
(T: FloatType) : T
(A: FixedArrayType) : BaseType(IndexType(A))
(a: Array) : BaseType(IndexType(a))
LAST (T: OrdinalType) : BaseType(T)
(T: FloatType) : T
(A: FixedArrayType) : BaseType(IndexType(A))
(a: Array) : BaseType(IndexType(a))
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For a non-empty ordinal typg, FIRST returns the smallest value GfandLAST returns the largest value. Tfis the
empty enumeratiolEIRST (T) andLAST(T) are static errors. If is any other empty ordinal type, the values returned
are implementation-dependent, but they sat’igfgST(T) > LAST(T).

For a floating-point typ&, FIRST(T) andLAST(T) are the smallest and largest values of the type, respectiel
IEEE implementations, these are minus and plus infinity.

For a fixed array type&, FIRST(A) is defined byFIRST (IndexType (A)) andLAST (A) by LAST(IndexType(A)).
Similarly, for an array, FIRST (a) andLAST (a) are defined by IRST (IndexType (a)) andLAST (IndexType(a)).
The expressioa will be evaluated only if it is an open array. Note thaiifs an open arra)fIRST (a) andLAST(a)
have typeINTEGER.

BITSIZE (x: Any) : CARDINAL
(T: Type) : CARDINAL

BYTESIZE (x: Any) : CARDINAL
(T: Type) : CARDINAL

ADRSIZE (x: Any) : CARDINAL
(T: Type) : CARDINAL

These operations return the size of the variabler of variables of typeT. BITSIZE returns the number of bits,
BYTESIZE the number of 8-bit bytes, ankDRSIZE the number of addressable locations. In all cagasust be a
designator ant@ must not be an open array type. A designataiill be evaluated only if its type is an open array type.

2.6.14 Text operations

infix & (a,b: TEXT): TEXT

The concatenation af andb, as defined bfext . Cat.

2.6.15 Constant expressions

Constant expressions are a subset of the general classressiqns, restricted by the requirement that it be possible
to evaluate the expression statically. All operations agal in constant expressions except £0R, LOOPHOLE,
TYPECODE, NARROW, ISTYPE, SUBARRAY, NEW, dereferencing (explicit or implicit), and the only procees that can be
applied are the functions in therd interface.

A variable can appear in a constant expression only as amamfutoOFIRST, LAST, NUMBER, BITSIZE, BYTESIZE, or
ADRSIZE, and such a variable must not have an open array type. lstaral top-level procedure constants are legal
in constant expressions.

2.7 Unsafe operations

There are some cases that no law can be framed to cover. -effgist

The features defined in this section can potentially causheaoked runtime errors and are thus forbidden in safe
interfaces and modules.

An unchecked type transfer operation has the form:

LOOPHOLE (e, T)
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wheree is an expression whose type is not an open array typgasd type. It denotes’s bit pattern interpreted as
a variable or value of typ®. It is a designator it is, and is writable if is. An unchecked runtime error can occur if
e's bit pattern is not a legat, or if e is a designator and some legal bit patternTfas not legal fore.

If T is not an open array typ®&ITSIZE(e) must equaBITSIZE(T). If T is an open array type, its element type
must not be an open array type, agigl bit pattern is interpreted as an array whose lengBIBSIZE (e) divided by
BITSIZE(the element type of). The division must come out even.

The following operations are primarily used for addrestharétic:

ADR (VAR x: Any) : ADDRESS
infix + (x: ADDRESS, y:INTEGER) : ADDRESS
infix - (x: ADDRESS, y:INTEGER) : ADDRESS
infix - (x,y: ADDRESS) : INTEGER

ADR (x) is the address of the variabte The actual argument must be a designator but need not kableritThe opera-
tions+ and- treat addresses as integers. The validity of the addressésqed by these operations is implementation-
dependent. For example, the address of a variable in a looed¢gure frame is probably valid only for the duration of
the call. The address of the referent of a traced referenqmimbly valid only as long as traced references prevent it
from being collected (and not even that long if the impleragoh uses a compacting collector).

In unsafe modules thEeNC andDEC statements apply to addresses as well as ordinals:

1
D)

INC (VAR x: ADDRESS; n: INTEGER :
DEC (VAR x: ADDRESS; n: INTEGER :

These are shortfar := x + nandx := x - n, except thak is evaluated only once.
A DISPOSE statement has the form:

DISPOSE (v)

wherev is a writable designator whose type is REFANY, ADDRESS, or NULL. If v is untraced, the statement frees the
storage for's referent and setg to NIL. Freeing storage to which active references remain is ahaaked runtime
error. If v is traced, the statement is equivalentta= NIL. If visNIL, the statementis a no-op.

In unsafe interfaces and modules the definition of “assigridbr types is extended: two reference tyfeandu are
assignable iff <: UorU <: T. The only effect of this change is to allow a value of tyd®RESS to be assigned to a
variable of typeUNTRACED REF T. Itis an unchecked runtime error if the value does not addzesriable of typ#.

In unsafe interfaces and modules the type constritBRACED REF T is allowed for traced as well as untraced
and the fields of untraced objects can be traced.i$fan untraced reference to a traced variahlthen the validity
of the traced references iis implementation-dependent, since the garbage collgetivably will not trace them
throughu.

2.8 Syntax

Care should be taken, when using colons and semicolons gathe sentence, that the reader understands
how far the force of each sign carries. —Robert Graves and Madge

2.8.1 Keywords

AND DO FROM NOT REPEAT UNTIL
ANY ELSE GENERIC OBJECT RETURN UNTRACED
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ARRAY ELSTIF IF OF REVEAL VALUE

AS END IMPORT OR ROOT VAR
BEGIN EVAL IN OVERRIDES  SET WHILE
BITS EXCEPT INTERFACE  PROCEDURE  THEN WITH
BRANDED  EXCEPTION  LOCK RAISE TO

BY EXIT LOOP RAISES TRY

CASE EXPORTS METHODS READONLY TYPE

CONST FINALLY MOD RECORD TYPECASE

DIV FOR MODULE REF UNSAFE

2.8.2 Reserved identifiers

ABS BYTESIZE  EXTENDED INTEGER MAX NULL SUBARRAY

ADDRESS CARDINAL  FALSE ISTYPE MIN NUMBER TEXT

ADR CEILING FIRST LAST MUTEX  ORD TRUE

ADRSIZE  CHAR FLOAT LONGINT NARROW REAL TRUNC

BITSIZE DEC FLOOR LONGREAL  NEW REFANY TYPECODE

BOOLEAN DISPOSE INC LOOPHOLE  NIL ROUND VAL
WIDECHAR

2.8.3 Operators

+ # = ; :
- > { T = <:
* <= ( ) - s =>
/ >= [ ] &

2.8.4 Comments

A comment is an arbitrary character sequence openet«kgnd closed by). Comments can be nested and can
extend over more than one line.

2.8.5 Pragmas

A pragma is an arbitrary character sequence openedttand closed by>. Pragmas can be nested and can extend
over more than one line. Pragmas are hints to the implenientdhey do not affect the language semantics.

We recommend supporting the two pragra3NLINE*> and<*EXTERNAL*>. The pragma*INLINE*> precedes a
procedure declaration to indicate that the procedure shmeiexpanded at the point of call. The pragma&XTERNAL
N:L*> precedes an interface or a declaration in an interface fodtelthat the entity it precedes is implemented by
the languagé., where it has the name If “ :L” is omitted, then the implementation’s default externaigaage is
assumed. If¥” is omitted, then the external name is determined from thellfi®3 hame in some implementation-
dependent way.

2.8.6 Conventions for syntax

We use the following notation for defining syntax:
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X Y Xfollowed byYy

Xy Xory

[X] X orempty

{X} A possibly empty sequence &%
X&Y XorYorX Y

“Followed by” has greater binding power thanor &; parentheses are used to override this precedence rule. Non
terminals begin with an upper-case letter. Terminals atieeeikeywords or quoted operators. The symhbiis
Number, TextLiteral, andCharLiteral are defined in the token grammar. Each production is tereihhy a
period. The syntax does not reflect the restrictions thatiations and exceptions can be declared only at the top level
nor does it include explicit productions f8EwW, INC, andDEC, which parse like procedure calls.

2.8.7 Compilation unit productions

Compilation = [UNSAFE] (Interface | Module) | GenInf | GenMod.
Interface = INTERFACE Id ";" {Import} {Decl} END Id "."
| INTERFACE Id "=" Id GenActls END Id ".".
Module = MODULE Id [EXPORTS IdList] ";" {Import} Block Id "."
| MODULE Id [EXPORTS IdList] "=" Id GenActls END Id ".".

GenInf = GENERIC INTERFACE Id GenFmls ";" {Import} {Decl} END Id ".".
GenMod = GENERIC MODULE Id GenFmls ";" {Import} Block Id ".".
Import = AsImport | FromImport.
AsImport = IMPORT ImportItem {"," ImportItem} ";".
FromImport = FROM Id IMPORT IdList ";".
Block = {Decl} BEGIN S END.
Decl = CONST {ConstDecl ";"}

| TYPE {TypeDecl ";"}

| EXCEPTION {ExceptionDecl ";"}

| VAR {VariableDecl ";"}

| ProcedureHead ["=" Block Id] ";"

| REVEAL {QualId ("=" | "<:") Type ";"Z}.
GenFmls = "(" [IdList] ")".
GenActls = "(" [IdList] ")".
ImportItem = Id | Id AS Id.
ConstDecl = Id [":" Typel "=" ConstExpr.
TypeDecl = Id ("=" | "<:") Type.
ExceptionDecl = Id ["(" Type ")"].
VariableDecl = IdList (":" Type & ":=" Expr).
ProcedureHead = PROCEDURE Id Signature.
Signature = "(" Formals ")" [":" Typel [RAISES Raises].
Formals = [ Formal {";" Formal} [";"] ].
Formal = [Mode] IdList (":" Type & ":=" ConstExpr).
Mode = VALUE | VAR | READONLY.
Raises = "{" [ QualId {"," QualId} ] "}" | ANY.
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2.8.8 Statement productions

Stmt = AssignSt | Block | CallSt | CaseSt | ExitSt | EvalSt | ForSt
| IfSt | LockSt | LoopSt | RaiseSt | RepeatSt | ReturnSt
|

TCaseSt | TryXptSt | TryFinSt | WhileSt | WithSt.

S = [ Stmt {";" Stmt} [";"] ].

AssignSt = Expr ":=" Expr.

CallSt = Expr "(" [Actual {"," Actuall}] ")".

CaseSt = CASE Expr OF [Case] {"|" Case} [ELSE S] END.
ExitSt = EXIT.

EvalSt = EVAL Expr.

ForSt = FOR Id ":=" Expr TO Expr [BY Expr] DO S END.
IfSt = IF Expr THEN S {ELSIF Expr THEN S} [ELSE S] END.
LockSt = LOCK Expr DO S END.

LoopSt = LOOP S END.

RaiseSt = RAISE Qualld ["(" Expr ")"].

RepeatSt = REPEAT S UNTIL Expr.

ReturnSt = RETURN [Expr].

TCaseSt = TYPECASE Expr OF [TCase] {"|" TCase} [ELSE S] END.
TryXptSt = TRY S EXCEPT [Handler] {"|" Handler} [ELSE S] END.
TryFinSt = TRY S FINALLY S END.

WhileSt = WHILE Expr DO S END.

WithSt = WITH Binding {"," Binding} DO S END.

Case Labels {"," Labels} "=>" S.

Labels = ConstExpr [".." ConstExpr].

Handler = Qualld {"," QualId} ["(" Id ")"] "=>" S.
TCase = Type {"," Type} ["(" Id ")"] "=>" S.
Binding = Id "=" Expr.

Actual = Type | [Id ":="] Expr .

2.8.9 Type productions

Type = TypeName | ArrayType | PackedType | EnumType | ObjectType
| ProcedureType | RecordType | RefType | SetType | SubrangeType
| n(n Type u)n.

ArrayType = ARRAY [Type {"," Type}] OF Type.

PackedType = BITS ConstExpr FOR Type.

EnumType = "{" [IdList] "3}".

ObjectType = [TypeName | ObjectType] [Brand] OBJECT Fields

[METHODS Methods] [OVERRIDES Overrides] END.
ProcedureType = PROCEDURE Signature.

RecordType = RECORD Fields END.

RefType = [UNTRACED] [Brand] REF Type.
SetType = SET OF Type.

SubrangeType = "[" ConstExpr ".." ConstExpr "]".
Brand = BRANDED [ConstExpr] .
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Fields = [ Field {";" Field} [";"] 1].

Field = IdList (":" Type & ":=" ConstExpr) .
Methods = [ Method {";" Method} [";"] ].
Method = Id Signature [":=" ConstExpr].
Overrides = [ Override {";" Override} [";"] ].
Override = Id ":=" ConstExpr .

2.8.10 Expression productions
ConstExpr = Expr.

Expr = E1 {0R E1}.
E1 = E2 {AND E2}.
E2 = {NOT} E3.
E3 = E4 {Relop E4}.
E4 = E5 {Addop E5}.
E5 = E6 {Mulop E6}.
E6 = {"+" | "-"} E7.
E7 = E8 {Selector}.
E8 = Id | Number | CharLiteral | TextLiteral

| Constructor | "(" Expr ")".
Relop = n=n I ngn | ngn | ng="n I nsn | ny=n | IN.
AddOp = ngn I n_n | nen
Mulop = "x" | "/" | DIV | MOD.
Selector = "~" | o114 | n[u EXPI‘ {n,u EXpI‘} u]n

| "(" [ Actual {"," Actual} ] ")".
Constructor = Type "{" [ SetCons | RecordCons | ArrayCons ] "1}".

SetCons = SetElt {"," SetElt}.

SetElt = Expr [".." Expr].
RecordCons = RecordElt {"," RecordElt}.
RecordElt = [Id ":="] Expr.
ArrayCons = Expr {"," Expr} ["," ".."].

2.8.11 Miscellaneous productions

IdList = Id {"," Id}.
QualId = Id ["." Id].
TypeName = QualIld | ROOT | UNTRACED ROOT.

2.8.12 Token productions

To read a token, first skip all blanks, tabs, newlines, cgeri@turns, vertical tabs, form feeds, comments, and pragma
Then read the longest sequence of characters that formseaatopor artd or Literal.

An Idis a case-significant sequence of letters, digits, and sndegs that begins with a letter. And is a keyword if
it appears in the list of keywords, a reserved identifier &jpears in the list of reserved identifiers, and an ordinary
identifier otherwise.

52



In the following grammar, terminals are characters surdegnby double-quotes and the special termD@IOTE
represents double-quote itself.

Id = Letter {Letter | Digit | "_"}.
Literal = Number | CharLiteral | TextLiteral.

CharLiteral = "’" (PrintingChar | Escape | DQUOTE) "’".

TextLiteral = DQUOTE {PrintingChar | Escape | "’"} DQUOTE.
Escape Il\ll Ilnll | ll\ll lltll I ll\ll llrll I ll\ll ||f||
Il\ll |l\|| | ll\ll non I ll\ll DQUDTE

"\" OctalDigit OctalDigit OctalDigit.

Number = Digit {Digit}
| Digit {Digit} "_" HexDigit {HexDigit}
| Digit {Digit} "." Digit {Digit} [Exp].
EXP = ("E" | gt | npn | nqn | nyn | "X") [||+u I u_u] Digit {Digit}.

PrintingChar = Letter | Digit | OtherChar.

HeXDlglt = Dlglt I npn I ngn | non | np" I ngn I ngEn
| lla" I Ilbll | "C" | Ildll | llell I llfll .

Dlglt = no" | nyn I | ngn
OctalDigit = "0" | "1" | ... | "7".
Letter = "A" | ng" | L. | ngn | ngh | np" | . | ngn
OtherChar = " " | nyn | ngn I ll$ll | n%n | ngn | n (n I n) "

| ll*ll | |l+|| I n , n I n_n | n . n | |l/|| I n : n I n ; n

| ngn | n=n I nsn I nen | na" | " [ll I II] " I n-an

| n n | nen | ll{’l I n | n | "}ll | n~n

| ExtendedChar

ExtendedChar = any char with ISO-Latin-1 code in [8_ 240..8_ 377].
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